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INTRODUCTION 
 

 Geometry can be developed in four fundamentally different ways, and 

that all  should be used if the subject is to be shown in all its splendor. 

 Euclid-style construction and axiomatics  √ 

 Linear algebra √ 

 Projective geometry 

 Transformation groups  

 

 Geometry, of all subjects, should be about taking different viewpoints, 
and geometry is unique among the mathematical disciplines in its ability 

to look different from different angles. Some prefer to approach it 

visually, others algebraically, but the miracle is that they are all looking 

at the same thing.  

 



Perspective 
PREVIEW 
Euclid’s geometry concerns figures that can be drawn with straightedge and compass, even 

though many of its theorems are about straight lines alone. Are there any interesting 

figures that can be drawn with straightedge alone? Remember, the straightedge has no 

marks on it, so it is impossible to copy a length. Thus, with a straightedge alone, we 

cannot draw a square, an equilateral triangle, or any figure involving equal line 

segments. Yet there is something interesting we can draw: a perspective view of a tiled 
floor, such as the one shown in Figure 5.1. 

This picture is interesting because it seems clear that all tiles in the view are of equal size. 

Thus, even though we cannot draw tiles that are actually equal, we can draw tiles that 

look equal. The solution takes us into a new form of geometry—a geometry of vision—

called projective geometry. 

Perspective view of a tiled floor 



Perspective drawing 
Sometime in the 15th century, Italian artists discovered how to draw three dimensional 

scenes in correct perspective. Figures below illustrate the great advance in realism this 

skill achieved, with pictures drawn before and after the discovery. 

The birth of St Edmund,  

by an unknown artist 

St Jerome in his study,  

by Albrecht D¨urer 



Perspective drawing 

The Italians drew tiles by a method called the costruzione legittima (legitimate 

construction), first published by Leon Battista Alberti in 1436. The bottom edge of the 

picture coincides with a line of tile edges, and any other horizontal line is chosen as the 

horizon. Then lines drawn from equally spaced points on the bottom edge to a point on 

the horizon depict the parallel columns of tiles perpendicular to the bottom edge. 

Another horizontal line, near the bottom, completes the first row of tiles. 

Beginning the costruzione legittima 



Perspective drawing 

The real problem comes next. How do we find the correct horizontal lines to depict the 

2nd, 3rd, 4th, . . . rows of tiles? The answer is surprisingly simple: Draw the diagonal of 
any tile in the bottom row (shown in gray in Figure below). The diagonal necessarily 

crosses successive columns at the corners of tiles in the 2nd, 3rd, 4th, . . . rows; hence, 

these rows can be constructed by drawing horizontal lines at the successive crossings. 

Completing the costruzione legittima 



Drawing with straightedge alone 

The construzione legittima takes advantage of something that is visually 
obvious but mathematically mysterious—the fact that parallel lines generally 

do not look parallel, but appear to meet on the horizon. The point where a 

family of parallels appear to meet is called their “vanishing point” by artists, 

and their point at infinity by mathematicians. The horizon itself, which consists 

of all the points at infinity, is called the line at infinity. 
 
 
 
However, the costruzione legittima does not take full advantage of points at 

infinity. It involves some parallels that are really drawn parallel, so we need 

both straightedge and compass. The construction also needs measurement to 

lay out the equally spaced points on the bottom line of the picture, and this 

again requires a compass. Thus, the costruzione legittima is a Euclidean 
construction at heart, requiring both a straightedge and a compass. 



Drawing with straightedge alone 

Is it possible to draw a perspective view of a tiled floor 

with a straightedge alone? Absolutely! All one needs to 

get started is the horizon and a tile placed obliquely. 

The tile is created by the two pairs of parallel lines, 

which are simply pairs that meet on the horizon. The first tile 

We then draw the diagonal of this tile 

and extend it to the horizon, obtaining 

the point at infinity of all diagonals 

parallel to this first one. This step 

allows us to draw two more diagonals, 

of tiles adjacent to the first one. These 

diagonals give us the remaining sides of 

the adjacent tiles, and we can then 

repeat the process.  

Constructing the tiled floor 



Projective plane axioms and their models 

Drawing a tiled floor with straightedge alone requires a “horizon”—a line at infinity. 

Apart from this requirement, the construction works because certain things remain the 

same in any view of the plane: 

 

• straight lines remain straight 

 

• intersections remain intersections 

 

• parallel lines remain parallel or meet on the horizon. 

 

Now parallel lines always meet on the horizon if you point yourself in the right direction, so 

if we could look in all directions at once we would see that any two lines have a point in 

common. This idea leads us to believe in a structure called a projective plane, containing 
objects called “points” and “lines” satisfying the following axioms. We write “points” and 
“lines” in quotes because they may not be the same as ordinary points and lines. 



Projective plane axioms and their models 

Axioms for a projective plane 

1.  Any two “points” are contained in a unique “line.” 
2.  Any two “lines” contain a unique “point.” 
3.  There exist four “points”, no three of which are in a “line.” 

Notice that these are axioms about incidence: They involve only meetings between 

“points” and “lines,” not things such as length or angle. Some of Euclid’s and 

Hilbert’s axioms are of this kind, but not many. 

 

• Axiom 1 is essentially Euclid’s first axiom for the construction of lines. 

• Axiom 2 says that there are no exceptional pairs of lines that do not meet. We can 

define “parallels” to be lines that meet on a line called the “horizon,” but this 

does not single out a special class of lines—in a projective plane, the “horizon” 

behaves the same as any other line.  

• Axiom 3 says that a projective plane has “enough points to be interesting.” We can 

think of the four points as the four vertices of a quadrilateral, from which one may 

generate the complicated structure seen in the pictures of a tiled floor at the 

beginning of this chapter. 



Projective plane axioms and their models 

The real projective plane 

If there is such a thing as a projective plane, it should certainly satisfy these axioms. But 

does anything satisfy them? After all, we humans can never see all of the horizon at once, 

so perhaps it is inconsistent to suppose that all parallels meet. These doubts are dispelled 

by the following model, or interpretation, of the axioms for a projective plane. The model 
is called the real projective plane RP2, and it gives a mathematical meaning to the terms 

“point,” “line,” and “plane” that makes all the axioms true. 

Take “points” to be lines through O in R3, “lines” to be planes through O in R3, and the 
“plane” to be the set of all lines through O in R3. Then  
 
1. Any two “points” are contained in a unique “line” because two given lines through O 

lie in a unique plane through O. 
2. Any two “lines” contain a unique “point” because any two planes through O meet in a 

unique line through O. 
3. There are four different “points,” no three of which are in a “line”: for example, the 

lines from O to the four points (1,0,0), (0,1,0),  (0,0,1), and (1,1,1), because no three of 

these lines lie in the same plane through O. 



Projective plane axioms and their models 

The real projective plane 

It is no fluke that lines and planes through O in R3 behave as we want “points” and “lines” 

of a projective plane to behave, because they capture the idea of viewing with an all-seeing 
eye. The point O is the position of the eye, and the lines through O connect the eye to points 
in the plane. Consider how the eye sees the plane z = −1, for example (Figure below). 

Viewing a plane from O 



Points P1,P2,P3, . . . in the plane z = −1 are joined to the eye by lines L1,L2,L3, . . . through 

O, and as the point Pn tends to infinity, the line Ln tends toward the horizontal. Therefore, it 

is natural to call the horizontal lines through O the “points at infinity” of the plane z = −1, 
and to call the plane of all horizontal lines through O the “horizon” or “line at infinity” of 
the plane z = −1. 
 

Unlike the lines L1,L2,L3, . . ., corresponding to points P1,P2,P3, . . . of the Euclidean plane z 
= −1, horizontal lines through O have no counterparts in the Euclidean plane: They extend 
the Euclidean plane to a projective plane. However, the extension arises in a natural way. 
Once we replace the points P1,P2,P3, . . . by lines in space, we realize that there are 
extra lines (the horizontal lines) corresponding to the points on the horizon. 

Projective plane axioms and their models 

The real projective plane 



Projective plane axioms and their models 

The real projective plane 

This model of the projective plane nicely captures our intuitive idea of points at infinity, but 

it also makes the idea clearer. We can see, for example, why it is proper for each line to 

have only one point at infinity, not two: because the lines L connecting O to points P along 
a line M in the plane z = −1 tend toward the same horizontal line as P tends to infinity in 

either direction (namely, the parallel toM through O). 
 

It is hard to find a surface that behaves like RP2, but it is easy to find a curve that behaves 

like any “line” in it, a so-called real projective line. Figure 5.11 shows how. The “points” in 
a “line” of RP2, namely the lines through O in some plane through O, correspond to points 
of a circle through O. Each point P = O on the circle corresponds to the line through O and 
P, and the point O itself corresponds to the tangent line at O. 

Modeling a projective line  

by a circle 



Homogeneous coordinates 

Because “points” and “lines” of RP2 are lines and planes through O in R3, 
they are easily handled by methods of linear algebra.  

 

o A line through O is determined by any point (x, y, z) =O, and it consists of 
the points (tx,ty,tz), where t runs through all real numbers. Thus, a 
“point” is not given by a single triple (x, y, z), but rather by any of its 
nonzero multiples (tx,ty,tz). These triples are called the homogeneous 
coordinates of the “point.”  
 

o A plane through O has a linear equation of the form ax+by+cz = 0, 
called a homogeneous equation. The same plane is given by the equation 
tax+tby+tcz=0 for any nonzero t. Thus, a “line” is likewise not given by 
a single triple (a,b, c), but by the set of all its nonzero multiples (ta,tb,tc). 



Homogeneous coordinates 

It makes no algebraic difference if the coordinates of “points” and “lines” are 
complex numbers. We can define a complex projective plane CP2, each “point” of 
which is a set of triples of the form (tx,ty,tz), where x, y, z are particular complex 
numbers and t runs through all complex numbers. It remains true that any two 
“points” lie on a unique “line” and any two “lines” have unique common point, 

simply because the algebraic properties of complex linear equations are exactly 

the same as those of real linear equations. Similarly, one can show there are four 

“points,” no three of which are in a “line” of CP2. 

 

Thus, there is more than one model of the projective plane axioms. Later we shall 

look at other models, which enable us to see that certain properties of RP2 are not 

properties of all projective planes and hence do not follow from the projective 

plane axioms. 



Homogeneous coordinates 

Projective space 

It is easy to generalize homogeneous coordinates to quadruples (w, x, y, z) and 

hence to define the three-dimensional real projective space RP3. It has “points,” 

“lines,” and “planes” defined as follows (we use vector notation to shorten the 

definitions): 

 

• A “point” is a line through O in R4, that is, a set of quadruples tu, where u = 

(w, x, y, z) is a particular quadruple of real numbers and t runs through all 

real numbers. 

 

• A “line” is a plane through O in R4, that is, a set t1u1 +t2u2 where u1 and u2 

are linearly independent points of R4 and t1 and t2 run through all real 

numbers. 

 

• A “plane” is a three-dimensional space through O in R4, that is, a set 

t1u1+t2u2+t3u3, where u1, u2, and u3 are linearly independent points of R4 

and t1, t2, and t3 run through all real numbers. 



Homogeneous coordinates 

Projective space 

Linear algebra then enables us to show various properties of the “points,” 

“lines,” and “planes” in RP3, such as: 

 

1. Two “points” lie on a unique “line.” 

 

2. Three “points” not on a “line” lie on a unique “plane.” 

 

3. Two “planes” have unique “line” in common. 

 

4. Three “planes” with no common “line” have one common “point.” 

 

These properties hold for any three-dimensional projective space, and RP3 is not 

the only one. There is also a complex projective space CP3, and many others. RP3 

has an unexpected influence on the geometry of the sphere. 



Projection 

The three-dimensional Euclidean space R3, in which 

the lines through O are the “points” of RP2 and the 

planes through O are the “lines” of RP2, also 

contains many other planes. Each planeP not 

passing through O can be regarded as a perspective 

view of the projective plane RP2, a view that 

contains all but one “line” of RP2. 

 

Each point P of P corresponds to a line (“of sight”) 

through O, and hence to a “point” of RP2. The only 

lines through O that do not meet P are those 

parallel to P, and these make up the line at infinity 

or horizon of  P. 

 

If P1 and P2 are any two planes not passing through 

O we can project P1 to P2 by sending each point P1 

in P1 to the point P2 in P2 lying on the same line 

through O as P1. The geometry of RP2 is called 

“projective” because it encapsulates the geometry 

of a whole family of planes related by projection. 

Projecting one plane to another 



Projection 

Projections of projective lines 

Projection of one plane P1 onto another plane P2 produces an image of P1 that 

is generally distorted in some way. Nevertheless, straight lines remain straight 

under projection, so there are limits to the amount of distortion in the image. To 

better understand the nature and scope of projective distortion, in this subsection 

we analyze the mappings of the projective line obtainable by projection. 

 

An effective way to see the distortion produced by projection of one line L1 onto 

another line L2 is to mark a series of equally spaced dots on L1 and the 

corresponding image dots on L2. You can think of the image dots as “shadows” 

of the dots on L1 cast by light rays from the point of projection P, except that we 

have projective lines through P, not rays, so it can seem as though the “shadow” 

on L2 comes ahead of the dot on L1. 



Projection 

Projections of projective lines 

In the simplest cases, where L1 and L2 are parallel, the image dots are also equally spaced. 

Figure 5.13 shows the case of projection from a point at infinity, where the lines from the 
dots on L1 to their images on L2 are parallel and hence the dots on L1 are simply translated 

a constant distance l. If we choose an origin on each line and use the same unit of length 
on each, then projection from infinity sends each x on L1 to x+l on L2. 

Projection from infinity 



Projection 

Projections of projective lines 

When L1 is projected from a finite point P, then the distance between dots is magnified by a 

constant factor k = 0. If we take P on a line through the zero points on L1 and L2, then the 

projection sends each x on L1 to kx on L2. Note also that this projection sends x on L2 to 

x/k on L1, so the magnification factor can be any k = 0. 

Projection from a finite point 



Projection 

Projections of projective lines 

When L1 and L2 are not parallel the distortion caused by projection is more extreme. Figure 

A shows how the spacing of dots changes when L1 is projected onto a perpendicular line L2 

from a point O equidistant from both. Figure B is a closeup of the image line L2, showing 

how the image dots “converge” to a point corresponding to the horizontal line through O 

(which corresponds to the point at infinity on L1). 

Fig A. Example of projective distortion of the line 

Fig. B. Closeup of the image line 



Projection 

Projections of projective lines 

We take O = (0,0) as usual, and we suppose that L1 is parallel to the x-axis, that 

L2 is parallel to the y-axis, and that the dots on L1 are unit distance apart. Then 

the line from O to the dot at x = n on L1 has slope 1/n and hence it meets the line 

L2 at y = 1/n. Thus the map from L1 to L2 is the function sending x to y = 1/x. 

This map exhibits the most extreme kind of distortion induced by projection, with 

the point at infinity on L1 sent to the point y = 0 on L2. 

 

Any combination of these projections is therefore a combination of functions 1/x, 

kx, and x+l, which are called generating transformations. The combinations of 

generating transformations are precisely the functions of the form 

 

 



Linear Fractional Functions 

The functions sending x to 1/x, kx, and x+l are among the functions called linear 

fractional, each of which has the form 

The condition ad −bc = 0 ensures that f (x) is not constant. Constancy occurs only if ax+b = 

(a/c) (cx+d) ; in which case, ad −bc = 0 because (ad/ c) = b. 

Any linear fractional function with c = 0 may be written in the form : 

Such a function may therefore be composed from functions sending x to 1/x, kx, and x+l — 

the functions that reciprocate, multiply by k, and add l — for various values of k and l: 

• first multiply x by c, 

• then add d, 

• then multiply again by c, 

• then reciprocate, 

• then multiply by bc−ad, 

• and finally add ac 

Thus, any linear fractional function is 

composed from the functions that 

reciprocate, multiply by k, and add l, and 

hence any linear fractional function on 

the number line is realized by a sequence 

of projections of the line. 



Linear Fractional Functions 

Dividing by zero 

You remember from high-school algebra that division by zero is not a valid operation. 

Nevertheless, in carefully controlled situations, it is permissible, and even enlightening, to 

divide by zero. One such situation is in projective mappings of the projective line. 

 

The linear fractional functions we have used to describe projective mappings of lines are 

actually defective if the variable x runs only through the set R of real numbers. For example, 

the function f (x) = 1/x we used to map points of the line L1 onto points of the line L2 does 

not in fact map all points. It cannot send the  point x = 0 anywhere, because 1/0 is 

undefined. This defect is neatly fixed by extending the function f (x) = 1/x to a new object x 

= ∞, and declaring that 1/∞ = 0 and 1/0 = ∞. The new object ∞ is none other than the 

point at infinity of the line L1, which is supposed to map to the point 0 on L2. Likewise, if 

1/0 = ∞, the point 0 on L1 is sent to the point ∞ on L2, as it should be. Thus, the function f 

(x) = 1/x works properly, not on the real line R, but on the real projective line R∪{∞}—a 

line together with a point at infinity. The rules 1/∞ = 0 and 1/0 = ∞ simply reflect this fact.  

 

It is much the same with any linear fractional function. The denominator of the fraction is 0 

when x = −d/c, and the correct value of the function in this case is ∞. Conversely, no real 

value of x gives f (x) the value a/c, but x = ∞ does. For this reason, any function f (x) = 

ax+b /  cx+d with ad−bc =0 maps the real projective line R∪{∞} onto itself.  



Linear Fractional Functions 

The real projective line RP1 

We can now give an algebraic definition of the object we called the “real 

projective line”. It is the set R∪{∞} together with all the linear fractional functions 

mapping R∪{∞} onto itself. We call this set, with these functions on it, the real 

projective line RP1. 

 

The set R∪{∞} certainly has the points we require for a projective line; the 

functions are to give R∪{∞} the “elasticity” of a line that undergoes projection. 

The ordinary line R is not very “elastic” in this sense. Once we have decided which 

point is 0 and which point is 1, the numerical value of every point on R is uniquely 

determined. In contrast, the position of a point on RP1 is not determined by the 

positions of 0 and 1 alone. 

 

For example, there is a projection that sends 0 to 0, 1 to 1, but 2 to 3. Nevertheless, 

there is a constraint on the “elasticity” of RP1. If 0 goes to 0, 1 goes to 1, and 2 

goes to 3, say, then the destination of every other point x is uniquely determined. 



The Cross Ratio 

It is visually obvious that projection can change lengths and even the ratio of 

lengths, because equal lengths often appear unequal under projection. And yet 

we can recognize that the first Figure in this section is a picture of equal tiles, 

even though they are unequal in size and shape. Some clue to their equality must 

be preserved, but what? It cannot be length; it cannot be a ratio of lengths; but, 

surprisingly, it can be a ratio of ratios, called the cross-ratio. 
 
The cross-ratio is a quantity associated with four points on a line. If the four 

points have coordinates p, q, r, and s, then their cross-ratio is the function of the 

ordered 4-tuple (p,q, r, s) defined by 


