##  TBIMC CD:MII

Disarikan dari :

# THE FOUR PILLARS OF GEOMETRY 

John Stillwell

## Introdination

- Geometry can be developed in four fundamentally difiecerent ways, and that all should he used if the sulbject is to he shown in all its splendor.
- Aiclictastyle consstriction andi ariomatios
- Ifinear algedra
- Proicelive geometry
- Transformation groupls
- Geometry, of all sulbjects, should be ahout taking different vievipoints, and geometry is unique among the mathematioal disciplines in its athility to look difficrent from diffierent angles. Some prefer to approach it visually, others algebraically, but the miracle is that they are all looking at the same thing.


## Understanding Ccometry ihrough Iinear Algobia

## Coordinates

- Around 1630, Pierrie de Fermat and Ren e Desearies independently discovered the advantages of numbers in geometry, as coorifinates. Desceartes was the first to publish a detailed account, in his hook of 1637. For this reason, he gets most of the credilit for the idea and the coordinate approach to geometriy hecame knowin as (irom the old way of wrifing his name: Des (aritess).
- Descorites thought that geometry was as Fuclid deserilhed it, and that numbers mercly axsyis in studying geometric figurres. But later mathematicians discovered objects with "non-Eizditican" properiies, such as "lines" having more than one "parallel" through a given point. To clarify this situation, it hecame desirable to , and so on, and to prove that they satisisy hiclid's axioms.


## Coorifinatics

o This program, carried out with the help of coordinates, is called the In the first three sections of this chapter, we do the main steps, using the set R of real numbers to define the Frofictean plane R2 and the points, lines, and circles in it. We also define the concepts of distance and (briefly) angle, and show how some crucial axioms and theorems follow. However, arilhmetiration ioes much more.

- It gives an algebraic description of constructibility by straightedge and compass, which makes it possible to prove that ceriain figures are not constructible.
- It cnables us to define what it means to "move" a geometric figine, which provides jusififoation for Ruclid's proof of Sas, and raises a new kind of geometric question: What kinds of "motion" exist?


## The number Iine and Ihe number plane

- The set R of real numbers results from filling the gaps in the set Q of rational numbers with irvalional numbers, such as $\sqrt{ }$ 2. This innovation enables us to consider $\mathbf{R}$ as a Iife, because it has no gaps and the numbers in it are ordered just as we imagine points on a line to be. We say that R , together with its oriering, is a moieloi the line.
- The first step is to huild the "plane," and in this we are guided by the properies of parallels in Euclid's geometry. We imagine a pair of peripendicular lines, called the reaxis and the $y$ aris, intersecting at a point $O$ called the origifn. We interpret the axes as number lines, with 0 the number 0 on each, and we assume that the posiife direction on the $x^{*}$ axis is to the right and that the positive difection on the $y$ raxis is upward.

Axes and coordinates


## The numinter Iine and Ithe number plane

- Through any point $P$, there is (by the parallel axiom) a unique line paralled to the $y$ axis and a unique line parallel to the $r$-axis. These two lines meet the $r$ raxis and $y$ axis at numbers $a$ and $D$ called the $k$ and vcoorifinates of $P$, respectively. It is important to remember which number is on the raxis and which is on the $y$ raxis, hecause obviously the point with $\boldsymbol{x}$-coordinate $=3$ and $\boldsymbol{y}$-coordinate $=4$ is dififerent from the point with $\boldsymbol{r}^{-}$ coordinate $=4$ and $\mu$ cooordinate $=3$.
- To keep the $\boldsymbol{x}$-coordinate a and the $\boldsymbol{y}$-coordinate $\boldsymbol{D}$ in their places, we use the ordered pair ( $a, L$ ). For example, ( 3,4 ) is the point wilh $\mathrm{rccoor} \boldsymbol{d i n a t e}=3$ and $\boldsymbol{y}$-coordinate $=4$, whereas $(4,3)$ is the point with $x$ coordinate $=4$ and $y$-coordinate $=3$. The ordered pair $(a, L)$ specifies $P$ uniquely hecause any other point will have at least one dififerent parallel passing through it and hence will difier from $P$ in either the $\notin$ or $y$ coordinate.
- Thus, given the existence of a

R whose points are real numbers, we also have a whose points are oridered pairs of real numbers. We oficen write this number plane as $\mathrm{R} \times \mathrm{R}$ or R ?

## Ifnes and Iteif cquations

- When coordinates are introduced, this allows us to iefine the properity of straight lines known. as slope You know from high-school mathematios that slope is the quotient "rise over run" and, more importantly, that the value of the slope does not depend on which two points of the line define the rise and the ruln.

- Now suppose we are given a line of slope a that crosses the y-aris arthe point $Q$ where $y=$ c. If $P=(X, y)$ is and point on this Ifine, then the rise from $Q$ to $P$ is $y$ - $\boldsymbol{c}$ and the rith is $\boldsymbol{X}$. Hence

$$
\text { slope }=a=\frac{y-c}{x}
$$

and therefore, mulliplying hoth sides hy $X, y-c=a x$, that $K$, $y=a x+c$.

- This equation is satisied by all points on the line, and only hy them, so we call it the equation of Iite IIfle.


## IInces antul Iteifr cquations

- Almost all lines have equations of this form; the only exceptions are lines that do not cross the $y$-aris. These are the veritioal IIfes, which also do not have a slope as we have defined it, although we could say they have inninilice slope. sueh a Ific has an equation of ine forin $x$ $=c$, for some constant c.
- Thus, all lines have cquations of the form $a x+i j y+c=0$, for some constants $a, b$, and $c$, called a linear cquation in the variandes $x$ and $y$.
- Up to this point we have heen following the steps of Desearies, who viewed equations of lines as information deatrceal from Aucidi's axions (in particular, from the paraller axiom). It is true that hiclides axioms prompt us to describe lines hy linear equations, but we cant also take the opposite view: Equations define what Iines and eurves are, and Ithey provide a model of Fidelid's axioms-showing that geometry follows from properies of the real numbers.
- In particular, if a line is defined to he the set of points ( $x$, $y$ ) in the number plane satisying a linear equation then we can prove the following statements that huclid took as axioms:
- Inere is a intique line firrough aily ivo alisifinet points,



## Distance

- We introduce the concept of alistance or lengill into the numbter plane IP much as we introduce lines. First we see what huclid's geometry suggeays distance should mean; then we tulin around and take the suggested meaning as a definition.
- Suppose that P1 = (X1, y1) and P2 = (X2, y2) are and two points in IP. Then it follows firom the meaning of coordinates that there is a right-angled triangle as shown in Figure below, and that |P1P2/ is the lengith of ils hyiotentise. $x$



## Dstance

- The vericoal side of the triangle has Iengith $y 2-y 1$, and the hovizontal side has lengith x2- x1. Then it follows from the Pyithagorean Itreorem Ithat

$$
\left|P_{1} P_{2}\right|^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2},
$$

and therefore,

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

- Thus, it is sensible to define the diseance /P1P2/ Detween any two points P1 and P2 hy the formitha . If we it iths, the Pythagorean theorem is virtually "true hy definition." It is certainly true when the right-angled triangle has a verical side and a horizontal side. and we will see later how to rotate any right-angled triangle to such a position (wilhout changing the lengihs of its sitiess).


## Dstance

## The equation of a circle

- The distance formula leads immediately to the equation of a circle, as follows. Suppose we have a circle wilh radius $r$ and cenler at ite point $P=(a, D)$. Then ally point $Q=(X, y)$ on the eirele is at alfsemee $r$ from $P$, and hence formula gives :

$$
r=|P Q|=\sqrt{(x-a)^{2}+(y-b)^{2}} .
$$

Squaring both sides, we get

$$
(x-a)^{2}+(y-b)^{2}=r^{2} .
$$

- We call this the equation of the eircte heeatrse it is satisfical by andy point $(x, y)$ on the dirte, and omly by shed points.


## Dryance

## The equidistant line of two points

- A circle is the set of points equidistant firom a point-its center. It is also natural to ask: What is the set of points equididistant irom two points in R2P? Answer: The set of points equididseant from two poins is a Iine. To see why, let the two points be P1 = (at, D1) and P2 = (a2,n2). Then a point $P=(\mathbb{X}, y$ ) is equididstant from P1 and P2 if /PP1| $=|P P 2|$, Ihat is, if $x$ and $y$ satisiv ithe equation

$$
(x-a 1)^{2}+(y-b 1)^{2}=(x-a 2)^{2}+(y-b 2)^{2} .
$$

- Squaring hoth sities of inis equation, we get

$$
(x-a 1)^{2}+(y-b 1)^{2}=\left(x^{2}-a 2\right)^{2}+(y-12)^{2} .
$$

- Fxpanding the squares gives

$$
x^{2}-2 A 1 x+221+y^{2}-2 n 1 y+n 21=x^{2}-2 \pi 2 x+a 22+y^{2}-2 n 2 y+n 22
$$

- The important thing is that the $x^{2}$ and $y^{2}$ terins now cancel, whith laavestine Ifinear equation

$$
2(a 2-a 11) x+2(b 2-m 1) y+(b 21-m 22)=0
$$

- Thus, the points $\boldsymbol{P}=(\mathbb{x}, y)$ equitidistant from P1 and P2 forin a line.


## Intersections of Ifines and eircles

- Now that lines and circtes are defined by equations, we can give exact algebraic equivalents of straightedge and compass operations :
- Drawing a Iine tirough given points correaponas to finding the equation of the Ifne through given points (x1, y1) and (x2, y2).
- Drawing a eirele will given center and radius corrayponds to sinding the equation of tine eirele with given center (a, $D$ ) and given radilis $r$ :
- Finding new points as intersections of previously drawn lines andeircles coriresponds to finding the solution points of
-     - a pair of equations of lines,
-     - a pair of equations of circles,
-     - the equation of a line and the equation of a circle.

Solving linear equations requires only the operations,,$+- \times$, and $\div$, and the quadratic formula shows that $\sqrt{ }$ is the only additional operation needed to solve quadratic equations. Thus, all intersection points involved in a straightedge and compass construction can be found with the operations,,$+- \times, \div$, and $\sqrt{ }$.

## Intersections of Iines ande circeas

- The operations,,$+- \times, \div$, and $\sqrt{ }$ can be carried out by straightedge and compass. Hence, we get the following resull:
- Algebiraic criterion for construcibilitity. A point is constructible starting from the points 0 and 1) if and only if ís coordinates are obtainathe from the number 1 hy the operations $+,-, x, \div$ and $\sqrt{ }$.
- The algebraic criterion for constructibility was discovered by Descaries, and its greatest virtue is that it enables us to prove that certain figures or points are not constricetithe. For example, one can prove that ine number $\sqrt[3]{2}$ is not constructible by showing that it cannot be expressed by a finite number of square roots, and one can prove that the angle $\pi / 3$ cannot be trisected by showing that cos $\pi 9$ also cannot be expressed by a finite number of square roots. These results were not proved until the 19th century, by Pierie Wantrel. Rather sophisicated algebra is required, hecause one has to go beyond Descartes' concept of constructibility to survey the fotality ofconstruatible numberis.


## Angle and slope

- The concept of distance is easy to handile in coordinate geometry because the distance hetween points (x1, y1) and (x2, y2) is an algebraic finction of their coordinates. This is not the caxse for the concept of
 algedraic function. Nor is its inverse function $t=$ tane or the retated fitnetions sine (sine) and cose (cosine).
- To stay within the world of algebra, we have to work with the slope trather than the angle $\theta$. Iines make the same angle with the rearis if they have the same slope, but to test equelity of angles in gencral we need the concept of relative slope: If Iinc II has slope it and Ifine I2 has slope t2, then the slope of LI relative to L2 is defined io De

- The reason for the $\pm$ sigin and the absolute value is that the slopes 11 , t2 alone io not syecily ant angle-Ihey specify only a pair of lines and hence a pair of angles that add to a straight angle.
- At any rate, with some care it is possible to use the concept of relative slope to test algebraically whether angles are equal. The concept also makes it possible to state the SaS and ash axioms in coordinate geometry, and to verify that all of kidid's and hilberi's axioms hold. We omit the details because they are laborious, and hecause we can approach sas and ASA difiecrently now that we have coorilinates. Specifically, it Decomes passible to define the concept of "motion" Ihat hrelid appealled io In his proof of sast This will be done in the meyt seation.


## Isometrias

- A possible weakness of our model of the plane is that it seems to single out a particular point (the origin 0 ) and partionlar Ifines (the reand y-arees). In Fuclid's plane, each point is like any other point and each line is like any other line. We can overcome the apparent bias of $\mathrm{R}^{2}$ by considering transsormations that allow and point to become the origin and any line to become the r-aris. As a bonus, this ildea gives meaning to the idea of "motion" that Fuclid tried to use in his atiempt to prove SaS.
- A transformation of the plane is simply a function $f$ :R2 $\rightarrow$ R2, in other words, a function that sends points to points. A transformation $f$ is called an isometry (from fite Greek for "samelengith") if it sends any two points, P1 and P2, to points f(P1) and I (P2) the same distance apart. Thus, an isometry is a function $f$ with the properity $f(P 1) f(P 2)|=| P 1 P 2 /$ for any two points P1, P2. Inturifively speaking, ant isometry "Imoves the plane rigidily" because it preserves the distance between points. There are many isometries of the plane, but they can be divided into a few simple and obvious types. We show examples of each type below, and, in the next section, we explain why only these types exist.
- You will notice that certain isometries (translations and rotations) make it possible to move the origin to any point in the plane and the $x$-aris to any line. Thus, $\mathrm{R}^{2}$ is really like Fuclid's plane, in the sense that each point is like any other point and each line is like any other line. This properity entiites us to choose axes wherever it is convenient. For example, we are entiiled to prove the triangle inequality, as suggested in the Fxercises to Section 3.3, hy choosing one veriex of the triangle at 0 and another on the positive x -arif.


## Isometrias

## Translations

- A translation moves each point of the plane the same distance in the same direction. Bach transation depends on two constants a and $l$, so we denote it hy ta, $l$. II sends each point
 any two points, hut it is worih checking this formally-so as to know what to do in less obvious cases.
- So let $P 1=\binom{1}{$, y1 } and $P 2=(x 2$, y2). II follows that

$$
t_{a, b}\left(P_{1}\right)=\left(x_{1}+a, y_{1}+b\right), \quad t_{a, b}\left(P_{2}\right)=\left(x_{2}+a, y_{2}+b\right)
$$

and therefore,

$$
\begin{aligned}
\left|t_{a, b}\left(P_{1}\right) t_{a, b}\left(P_{2}\right)\right| & =\sqrt{\left(x_{2}+a-x_{1}-a\right)^{2}+\left(y_{2}+b-y_{1}-b\right)^{2}} \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\left|P_{1} P_{2}\right|, \quad \text { as required. }
\end{aligned}
$$

## Isomatries

## Rotations

- We think of a rotation as something involving an angle $\theta$, but, as mentioned in the previous section, it is more convenient to work algebraically with cose and sine . These are simply two numbers $c$ and $s$ sueh that $c^{2}+s^{2}=1$, so we will denote a rotation of the plane albout the origin hy C chs.
- The rotation ress sends the point (x, y) to the point (ex-sy, sy+ay). Ifis not obvious why this transiormation should he coalled a rotation, but it hecomes clearer aiter we check that re,s prearerves langiths. Also, res,s sends ( 0,0 ) to îself, and it moves $(1,0)$ to $(c, s)$ and ( 0,1 ) io ( -s , o, which is exacily what rotaion aboit 0 Itrough angle $\theta$ aloes. We will see in the nerit section that only one isometry of the plane moves these ithree points in this manner.


Movement of points by a rotation

## Isometrias

## Reflections

- The easiest reflection to describe is reflection in the $x$-aris, whith sends $P=(X, y)$ it $P=$ ( $\mathrm{x},-\mathrm{y}$ ). Agiain it is obvious that Ihis is aln fisometry, Dit we can cheok by calculating the distance between reilected points P1 and P2.
- We can reflect the plane in any line, and we can do this by combining reflection in the $x$ axis wilh transalions and rotaions. For example, retlecion in the line $y=1$ (whith is parallel to the x-axis) is the reatil of the following three isometries:
- • 10, - 1, a transalion that moves the life $\boldsymbol{y}=1$ to the $x$-axis,
-     - reflection in the $x$ ravis,
- • 10,1, which moves the $x$-aris back to the Iine $y=1$.
- In general, we can do a rellection in any line L hy moving L to the f -axis hy some combination of transation and rotation, reflecting in the $x$-arit, and then moving the $x$-aris badk 10 I .
- Reflections are the most findamental isometries, hecause any isometry is a combination of them, as we will see in the next section. In particular, any translation is a combination of two reflections, and any rotation is a combination of two reflections.


## Isomotries

## Glide Reflections

- A glide reflection is the resulf of a reflection followed by a translation in the direction of the line of reileciion. For example, if we reilect in the $x$ raxis, sending $(x, y)$ to $(x,-y)$, and follow this wilt the transhation it, of iongith in the $x$-difrection, then ( $x, y$ ) endels at $(x+1,-y)$.
- A glide reflection wilh nontero translation lengith is diffierent from the three types of isometry previously considered.
- It is not a translation, hecause a transation maps any line in the difrection of transsation into itseli, whereas a glide reflection maps only one line into itself (namely, the line of reilection).
- It is not a rotation, because a rotation has a fixed point and a glide reflection does not.
- It is not a reflection, hecause a reflection also has fixed points (all points on the line of reflection).


## The Itree refleations theorem

- Three reilections theorem. Any isometry of h2 is a combination of one, two, or Itree relleations.
- One refleciion is a reflection, and we found in the previous execrise set that combinations of two reficciions are transations and rotations, and that combinations of inree reilections are glide reilections (which indude reflections). Thus, an ssometyy of he is eilher a transalion, a roation, or a gifde reflecion.


## Andinotes for "Coorifinates"

- The discovery of coordinates is rightily considered a turining point in the development of mathematios hecause it reveals a vast new panorama of geometry, open to exploration in at least three dififerent dirrections.
- Descrintion of curves hy equations, and their analysis hy algebra. This diricetion is called algetraic geometry, and the aurves deserithed by polynomial equations are called algelvaic curves. Straight Ifines, described by the linear cquations ax + by $+\ell=0$, are
 curves of degree 2, and so on. One can see that there are curves of arbitrarily high degree.
- Algiebraic study of objects described by linear equations (such as lines and planes). Fven this is a big sulbject, called Ifrear algedra. Although it is technically part of algehraic geometry, it has a special flavor, very close to that of Fuclidean geometry. The real strengith of linear algebra is its ability to describe spaces of any number of dimensions in geometric langurage.
- The study of transformations, which draws on the special branch of algebra knowil as group Ineory becanse many geometric transsormations are described by linear equations, this study overlaps with linear algebra.


## Unierstanding Geometry through Lincar Algebra

## Vector and Ficolidealn spaces

- In this chapter, we process coordinates by Iincar algedra. We view points as veciows that caln be addied and mulifiplied iby intimbers, and we introduce the inner proillet of ve日ors, whioh gives ant efficientralgebraic method to deal with hoth lengiths and angles.
- We revisit some theorems of Fucilid to see where they fit in the world of vector geometriy, and we become acquainted with some theorems that are partioularly natural in this environment.


## Vector

- Vectors are mathematioal objects that can he adided, and mulifinlied by numbers, subject to certain rules. The real numbers are the simplest example of veciors, and the rules for sums and mulifiples of any vectors are just the following properies of sums and mulifiples of numbers:

$$
\begin{array}{rlrl}
\mathbf{u}+\mathbf{v} & =\mathbf{v}+\mathbf{u} & 1 \mathbf{u} & =\mathbf{u} \\
\mathbf{u}+(\mathbf{v}+\mathbf{w}) & =(\mathbf{u}+\mathbf{v})+\mathbf{w} & a(\mathbf{u}+\mathbf{v}) & =a \mathbf{u}+a \mathbf{v} \\
\mathbf{u}+\mathbf{0} & =\mathbf{u} & (a+b) \mathbf{u} & =a \mathbf{u}+b \mathbf{u} \\
\mathbf{u}+(-\mathbf{u}) & =\mathbf{0} & a(b \mathbf{u}) & =(a b) \mathbf{u} .
\end{array}
$$

- These rules obviously hold when $a, h, 1, \mu, \nu, w, 0$ are all mimmbers, and 0 isthe ordinariy $\boldsymbol{z e r o .}$
- They also hold when u,v,w are points in the plane Rr, if we interpret 0 as $(0,0),+$ as the vector sim defineal for $I=$ (II1, I2) and $v=(V 1$, v2) iv

$$
(\| 11, u 2)+(v 1+v 2)=(I I 1+v 1, u 2+v 2),
$$

- and ant as the sealar mintifiple defineal hy

$$
a(I 11, \| 2)=(a\|11, a\| 2) .
$$

## Vector

- The vector sum is geometrically interesting, hecause u+v is the fourih veriex of a parallelogram formed by the points 0 , u, and v.


The parallelogram rule for vector sum

- In fact, the rule for forming the sum of two vectors is ofiten oalled the "parallelogriam rule."


## Vector

- Scalar multiplication hy a is also geometrically interesting, Deeanse it represents magnification by the factor a. It magnifies, or allaters, the whole plane by the factor a, transforming each figine into a similar copy of insel.


Scalar multiplication as a dilation of the plane

## Real vector syaces

- It seems that the operations of vector addition and sealar mulifiplication capture some geometrically interesing features of a space. Wiith this in mind, we define a real vector syace to de a set V of oDjects, called vectors, with operations of vector addilion and sealar mulliiplication satisying the following conditions:
- If u and v are in $V$, then so are utvond alı for anv real nummber a.
 inverse $-\boldsymbol{I}$ silgh that $I+(-I)=0$.
- Vector addition and sealar mulliplication on $V$ have the eight properties listed at the beginning of this section.
- It turins out that real vector spaces are a natural setiing for Fuclidean geometry. We must introduce extria structure, which is called the imner prodluct, before we caln talk aldout lengith and angle. Bitt once the inner product is there, we coan prove all theorems of Findidean geometry, ofien more efiiciently than beiore. also, we can uniformin extend geometry to any mimber of dimensions hy considering the space $t^{1 T}$ of ordered In-tuples of real numberis ( $X 1$, , $2, \ldots, \ldots, x i n)$.


## Direction and Ifinear indepandence

- Veciors give a concept of afireation in IP Dy representing lines ithrought 0 . If u is a nonzero vector, then the real mulliples alt of I make ifp the line through 0 and u, so we call them the points "in direction u from 0." You may prefer to say that -u is in the direction opposict to I, Dut it is simplerto associate difrection with a whole line, rather that a hali line.)
- Nonrero vectors u and v, therefore, have afiferent afirections from 0 ifneither is a muliiple of the other. It follows that such u and v are Iinearly independent; that is, Itere are no real mumbers a and h, not holt zero,

$$
\text { wilh } a l u+b v=0 .
$$

Because, if one of a, Dis not zero in infs equation, we caln divite dy it and hence express one of $u$, $v$ as a mulliple of the other.

- The concept of direction has an obvious generalization: whas difrection u from v (or reative
 in viewing $w-v$ as an abbreviation for the line segment from $v$ to w. As in coordinate geometry, we say that line segments from v to w and froms to $t$ are paralled if Ihey have Ithe same diriection; that is, if

$$
\mathrm{w}-\mathrm{v}=\mathrm{a}(1-\mathrm{s}) \text { for some real niminter } \mathrm{a}=0 \text {. }
$$

## Dircetion and Innear indepondence

- Figure helow shows an example of paralled line segments, from v to w and from s to t , hoth of which have direction u. Here we have

$$
\mathbf{w}-\mathbf{v}=\frac{3}{2} \mathbf{u} \quad \text { and } \quad \mathbf{t}-\mathbf{s}=\frac{1}{2} \mathbf{u}, \quad \text { so } \quad \mathbf{w}-\mathbf{v}=3(\mathbf{t}-\mathbf{s})
$$



Parallel line segments with direction $\mathbf{u}$

## Direction and Ifnear independence

The vector concept of parallels on two important theorems.

- Vector Thales theorem.

If s antel $v$ are on one Ifine ithrongin 0 , $t$ and $w$ are on another, and $w-v$ is paralled io $1-\mathrm{s}$, then $\mathrm{V}=$ as and $\mathrm{w}=$ at for some nimber a.

- Vector Pappuis theorem.
 andi $t-s$ paralled io $V-W$, then $I-I$ is paralled io $W-I$ :


## Midpoints and centroids

- The definifion of a veal vector space does not inclucie a definifion of distance, hut we can speak of the midpoint of the line segment from ut to v and, more generally, of the point that divides this segment in a given ratio
- To see why, first observe that $v$ is obtained from ut by addiing $v$ - $u$, the vector that represents the position of v relaitive to IL . Nore generally, adding any sealar mulifiple a(v-II) to II prodtrees a point whose alireetion relative to u is the same as that of v . Thus, the points $u+a(v-I)$ are preciscly those on the line through und $v$. In particular, the midpoint of the segment hetween u and $v$ is obtained by adding 12 ( $v-\mathrm{u}$ ) to $u$, and hence,


One might describe this result by saying that the midpoint of the line segment between u and $v$ is the vector averagic of I and $v$.

## Midipoints and centroids

- This description of the midpoint gives a very short proof of the theorem firom that the dilagonals of a parallelogram hisect each other.

Diagonals of a parallelogram


- Then the midpoint of the diagonal from 0 to $u+\mathrm{v}$ is $1 / 2(\mathrm{u}+\mathrm{v})$. And, hy the result just proved, this is also the midpoint of the other diagonal-the line segment between u and v .
- The vector average of two or more points is physically significant hecause it is the barvcenter or center of mass of the sysyem ontained ay placing equal masses at the given points. The geometric name for this vector average point is the centroitl.
- In the case of a triangle, the centroid has an altemative geometric description, given by the following classical theorem about medlans: Ithe Ifines firom the verices of a triangle to the midpoints of the resperive opposite sides.


## Midpoints ande centroids

- Concurrence of medians. The medfans of aly triangle pass throught the same point, the centroid of the triangle.

The medians of a triangle


- Looking at this figure, it seems likely that the medians meet at the point $2 / 3$ of the way from it $101 / 2(v+w)$, that is, at the point
- This is the centroid, and a similar argument shows that it lies $2 / 3$ of the way between $v$ and $1 / 2(u+w)$ and $2 / 3$ of the way between $w$ and $1 / 2(u+v)$. That is, the centroid is the common point of all three metifans.


## The inner proillet

 uIVVI + I2VV2. Thus, the inner proillet of two vectors isnot another vector, hut a real number or "scalar:" For this reason, $u \cdot v$ is also called the sealar prodtret of it and $v$.

- It is easy to check, from the definition, that the inner product has the algedraic properies

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\mathbf{v} \cdot \mathbf{u} \\
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w}) & =\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w} \\
(a \mathbf{u}) \cdot \mathbf{v} & =\mathbf{u} \cdot(a \mathbf{v})=a(\mathbf{u} \cdot \mathbf{v})
\end{aligned}
$$

which immediately give information about lengith and angle:

- The lengith |u| is the distance of $u=\left(I I t\right.$, ,I2) from 0 , by the definition of distance in $R^{2}$
- Vectors u and v are perpendicular if and only if u $\cdot \mathrm{v}=0$


## The inner proiluct

## Concurrence of allitudes.

In any iriangle, the perpendiculars from the verices to opposile sides (the alititules) have a cominol point.

- To prove this theorem, take 0 at the intersection of two allitudes, say those through the vertices us and $v$. Then it remains to show that the line from 0 to the third vertex w is perpendicular to the sitie v -u.

Altitudes of a triangle


## The inner product and casine

- The inner product of vectors u and $v$ depends not only on their lengiths |u| and |v| but also on the angle $\theta$ between them. The simpleast way to express its dependence on angle is with the help of the cosine finnefion. We write the cosine as a function of angle $\theta$, cose . Buti, as usual, we avoid measuring angles and instead define cose as the ratio of sides of a rightangled triengle. For simplicity, we assume that the triangle has verices 0 , u, and v as shown in the figure helow.

Cosine as a ratio of lengths


- Then the side $v$ is the hypotenuse, $\theta$ is the angle between the side u and the hypotenuse, and its cosine is defined by

$$
\cos \theta=\frac{|\mathbf{u}|}{|\mathbf{v}|} .
$$

## The inner prodtuct and cosine

- Inner product formula. If e is the angle detveen vectors u andil, then $\mathrm{u} \cdot \mathrm{v}=|\mathrm{u}||\mathrm{v}| \cos \theta$.

This formula gives a convenient way to calculate the angle (or at least its cosine) between any two lines, hecause we know how to calculate |u| and |V|. It also gives us the "cosine rule" of trigonometry directily firom the calculation of (u-v) .(u-v).

- Cosine riule. In anv triangle, wifh sides $\mu$, $v$, and $I-v$, and angle $\theta$ opposict to Ihe side It- V , $|u-v| 2=|u| 2+|v| 2-2|u||v| \cos \theta$.

Quantities mentioned in the cosine rule


## The triangle inculality

- In vector geometry, the triangle inequality $|u+v| \leq|u|+|v|$ is usually derived from the fact that $|u \cdot v| \leq|u||v|$. This result, known as the Calcely-Sehwary incquality.
- The reason for the fuss about the Cauchy-Schwariz incquality is that it holds in spaces more complicated than R2, with more complioated inner products. Because the triangle inequality follows from dauchy-Schwart, it too holds in these complicated spaces. We are mainly concerned with the geometry of the plane, so we io not need complicated spaces. However, it is worth saying a few words albout Rh, Decause Ifnear algedra works just as well there as it does in R2.
- Higher dimensional Euclidean spaces


## Higher dimensional Bucliidean spaces

 ordered in-tiples are callear in-dimensional veciors.

- It is easy to check that $\mathrm{R}^{n}$ has the properifes entimerater previousylv. Hence, $\mathrm{R}^{n}$ is a real vector syace under the vector simin and sealar mulifiplication operations just described.
- Rn Decomes a hucildean space when we give it the extira strueture ofan inner product with the properies commerated previously. For example, the distance of (III, II2, IIk) from o in $I_{3}{ }^{3}$ is

$$
|\mathbf{u}|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}},
$$



## Higher ilimensional Aucliciean spaces

- All theorems proved in this chapter for vectors in the plane R2 hold in R". This fact is elear if we take the plane in Ain to consist of veatoss of the form ( $x 1$, x2,0,
 Bitt iln fact aldy given plant in han behaves the same as the special plane of vectors (x1, x2,0, . . . ,0). Whe skifp the details, Dit it call be proved by constructing an isometry of $\mathrm{R}^{n}$ mapping the given plane onto the special plane. as in R², any isometry is a prodict of reflections. In R", at most It +1 reflections are requifect.


## Rotaifons, matrices, and complex numbers

## Rotation matrices

- We have defined a rotation of $\mathrm{R}^{2}$ as a function res, where $c$ and sare two real numbers such that $c 2+12=1$. We deveribed re, sas the ithnetion that sends $(x, y)$ it ( (Cx-sy, sy + ay , מIt it is also described by ithe matrix of coefficients of $x$ and $y$, mamely


$$
\text { where } c=\cos \theta \text { and } s=\sin \theta \text {. }
$$

- Matrix notation allows us to rewrite $(X, y) \rightarrow(C X-S y, s Y+G Y)$ as

- Functions are therehy separated from their variables, so they can be composed without the variables hecoming involved-simply by mulliplying matrices.


## Rotaifons, matrices, and complex numbers

## Rotation matrices

- This idea gives proois of the formulas for $\cos (\theta 1+\theta 2)$ and sin( $(1+\theta 2)$, but with the variables $x$ and $y$ filleredout:
- Rotation through angle 01 is given by the matrix
- Rotation through angle 02 is given by the matrix
$\left(\begin{array}{rr}\cos \theta_{1} & -\sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1}\end{array}\right)$
$\left.\begin{array}{rr}\cos \theta_{2} & -\sin \theta_{2} \\ \sin \theta_{2} & \cos \theta_{2}\end{array}\right)$
- Rotation through $01+02$ is given by the product of these two matrices. That is by matrix multiplication
- Finally, equating coriesponding entries in the first and last matrices,

$$
\begin{array}{r}
\cos \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} \\
\sin \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}
\end{array}
$$

## Rotaifons, matrices, and complex numbers

## Rotation matrices

- This idea gives proois of the formulas for $\cos (\theta 1+\theta 2)$ and sin( $(1+\theta 2)$, but with the variables $x$ and $y$ filleredout:
- Rotation through angle 01 is given by the matrix
- Rotation through angle 02 is given by the matrix
$\left(\begin{array}{rr}\cos \theta_{1} & -\sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1}\end{array}\right)$
$\left.\begin{array}{rr}\cos \theta_{2} & -\sin \theta_{2} \\ \sin \theta_{2} & \cos \theta_{2}\end{array}\right)$
- Rotation through $01+02$ is given by the product of these two matrices. That is by matrix multiplication
- Finally, equating coriesponding entries in the first and last matrices,

$$
\begin{array}{r}
\cos \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} \\
\sin \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}
\end{array}
$$

## Rotaitons, matrices, and complex numbers

## Complex numbers

- One advantage of matrices, which we do not pursue here, is that they can he used to gencralize the itiea of rotaion to any number of dimensions. But, for rotations of RR, there is a notation even more efficient than the rotation matrix.

It is the complex number $\cos \theta+i \sin \theta$, where $i=\vee-1$.


- We represent the point $(x, y) \in R^{2}$ iy the complex number $z=X+i j$, and we rotate it through angle $\theta$ about 0 by mulfiplying it by cos $\theta+i \sin \theta$. This procedure works because $\boldsymbol{P}=-1$, and inerefore, $(\cos \theta+i \sin \theta)(x+i y)=x \cos \theta-y \sin \theta+I(x \sin \theta+y$ $\cos \theta)$.
- Thus, mulliplication by cos $\theta+i \sin \theta$ sendis each point (x, y) to ine point ( x cas $\theta-y$ sin $\theta, X \sin \theta+y \cos \theta$ ), whith is the resillt of rotaing $(X, y)$ aldoit 0 through angle $\theta$. Mmlifiplying all poins at once iv cas $\theta+i$ sin $\theta$, inerefore, rotates the whole plane aldoit 0 through angle $\theta$.


## Andinotes for "Vector \& Areledlan spaces"

- Because the geometric content of a vector space with an inner product is much the same as Fuclidean geometry, it is interesing to see how many axioms it takes to describe a vector space.
- To define a vector space, we hegian with eight axioms for vector addition and scatar multiplication:

$$
\begin{array}{rlrl}
\mathbf{u}+\mathbf{v} & =\mathbf{v}+\mathbf{u} & 1 \mathbf{u} & =\mathbf{u} \\
\mathbf{u}+(\mathbf{v}+\mathbf{w}) & =(\mathbf{u}+\mathbf{v})+\mathbf{w} & a(\mathbf{u}+\mathbf{v}) & =a \mathbf{u}+a \mathbf{v} \\
\mathbf{u}+\mathbf{0} & =\mathbf{u} & (a+b) \mathbf{u} & =a \mathbf{u}+b \mathbf{u} \\
\mathbf{u}+(-\mathbf{u}) & =\mathbf{0} & a(b \mathbf{u}) & =(a b) \mathbf{u} .
\end{array}
$$

- Then, we addied inree (or four, depending on how you counti) axioms for the inner product :

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\mathbf{v} \cdot \mathbf{u} \\
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w}) & =\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w} \\
(a \mathbf{u}) \cdot \mathbf{v} & =\mathbf{u} \cdot(a \mathbf{v})=a(\mathbf{u} \cdot \mathbf{v})
\end{aligned}
$$

## Androtes for "Vector \& Aldedlean Syaces"

- We also need relations among inner product, lengith, and angle-at a minimum the cosine formula,

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta
$$

- At the very least, one needs axioms saying that the sealars satisis the ordinariy rules of calculation, the so-called field arions (ints is ustal when iefining a vectorspace):

$$
\begin{array}{rlrl}
a+b & =b+a, & a b & =b a \\
a+(b+c) & =(a+b)+c, & a(b c) & =(a b \\
a+0 & =a, & a 1 & =a \\
a+(-a) & =0, & a a^{-1} & =1 \\
& a(b+c)=a b+a c
\end{array}
$$

(commutative laws)
(associative laws)
(identity laws)
(inverse laws)
(distributive law)

- Thus, the usual definition of a vector space, with an inner product suitable for Fuclidean geometry, takes more than 20 axioms! admilitedly, the ficti axioms and the vector space axioms are useinl in many other parts of mathematics, whereas most of the fillhert axioms seem meaninginl only in geometry, And, by varying the inner product slightily, one can change the geometry of the vector space in interesiing ways.


## Andinotes for "Veator as Alolemian Spaces"

- Still, one can dream of building geometry on a much simpler set of axioms.
- In the next section, we will realize this dream with Drojective geometry.

