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Introduction 

 

 Geometry can be developed in four fundamentally different ways, and that 

all  should be used if the subject is to be shown in all its splendor. 

 Euclid-style construction and axiomatics  

 Linear algebra  

 Projective geometry 

 Transformation groups  

 

 Geometry, of all subjects, should be about taking different viewpoints, and 

geometry is unique among the mathematical disciplines in its ability to 

look different from different angles. Some prefer to approach it visually, 

others algebraically, but the miracle is that they are all looking at the 

same thing.  

 



 Around 1630, Pierre de Fermat and Ren´e Descartes independently discovered 

the advantages of numbers in geometry, as coordinates. Descartes was the first 

to publish a detailed account, in his book G´eom´etrie of 1637. For this reason, 

he gets most of the credit for the idea and the coordinate approach to 

geometry became known as Cartesian (from the old way of writing his name: 

Des Cartes). 

 

 Descartes thought that geometry was as Euclid described it, and that numbers 

merely assist in studying geometric figures. But later mathematicians 

discovered objects with ―non-Euclidean‖ properties, such as ―lines‖ having 

more than one ―parallel‖ through a given point. To clarify this situation, it 

became desirable to define points, lines, length, and so on, and to prove that 

they satisfy Euclid’s axioms. 

Coordinates 

Understanding Geometry through Linear Algebra 



 This program, carried out with the help of coordinates, is called the 

arithmetization of geometry. In the first three sections of this chapter, we do the 

main steps, using the set R of real numbers to define the Euclidean plane R2 

and the points, lines, and circles in it. We also define the concepts of distance 

and (briefly) angle, and show how some crucial axioms and theorems follow. 

However, arithmetization does much more. 

 

 It gives an algebraic description of constructibility by straightedge and 

compass, which makes it possible to prove that certain figures are not 
constructible. 

 

 It enables us to define what it means to ―move‖ a geometric figure, which 

provides justification for Euclid’s proof of SAS, and raises a new kind of 

geometric question : What kinds of ―motion‖ exist? 

Coordinates 



The number line and the number plane 

 The set R of real numbers results from filling the gaps in the set Q of rational numbers 

with irrational numbers, such as √2. This innovation enables us to consider R as a line, 

because it has no gaps and the numbers in it are ordered just as we imagine points on a 

line to be. We say that R, together with its ordering, is a model of the line.  

 

 The first step is to build the ―plane,‖ and in this we are guided by the properties of 

parallels in Euclid’s geometry. We imagine a pair of perpendicular lines, called the x-axis 
and the y-axis, intersecting at a point O called the origin. We interpret the axes as number 

lines, with O the number 0 on each, and we assume that the positive direction on the x-

axis is to the right and that the positive direction on the y-axis is upward.  

Axes and coordinates 



The number line and the number plane 

 Through any point P, there is (by the parallel axiom) a unique line parallel to the y-axis 

and a unique line parallel to the x-axis. These two lines meet the x-axis and y-axis at 

numbers a and b called the x- and ycoordinates of P, respectively. It is important to 

remember which number is on the x-axis and which is on the y-axis, because obviously 

the point with x-coordinate = 3 and y-coordinate = 4 is different from the point with x-

coordinate =4 and y-coordinate =3. 

 

 To keep the x-coordinate a and the y-coordinate b in their places, we use the ordered pair 
(a,b). For example, (3,4) is the point with x-coordinate =3 and y-coordinate =4, whereas 

(4,3) is the point with x-coordinate =4 and y-coordinate = 3. The ordered pair (a,b) 

specifies P uniquely because any other point will have at least one different parallel 

passing through it and hence will differ from P in either the x- or y-coordinate. 

  

 Thus, given the existence of a number line R whose points are real numbers, we also have 

a number plane whose points are ordered pairs of real numbers. We often write this 

number plane as R×R or R2. 

 



Lines and their equations 

 When coordinates are introduced, this allows us to define the property of straight lines 

known. as slope You know from high-school mathematics that slope is the quotient ―rise 

over run‖ and, more importantly, that the value of the slope does not depend on which two 

points of the line define the rise and the run.  

 

 

 

 

 

 

 Now suppose we are given a line of slope a that crosses the y-axis at the point Q where y = 
c. If P = (x, y) is any point on this line, then the rise from Q to P is y−c and the run is x. 
Hence 

 

 

     and therefore, multiplying both sides by x, y−c = ax, that is, y = ax + c . 

 This equation is satisfied by all points on the line, and only by them, so we call it the 

equation of the line. 

 



Lines and their equations 

 Almost all lines have equations of this form; the only exceptions are lines that do not cross 

the y-axis. These are the vertical lines, which also do not have a slope as we have defined 

it, although we could say they have infinite slope. Such a line has an equation of the form x 
= c , for some constant c. 

 

 Thus, all lines have equations of the form ax+by+c = 0 , for some constants a, b, and c, 
called a linear equation in the variables x and y. 

 

 Up to this point we have been following the steps of Descartes, who viewed equations of 

lines as information deduced from Euclid’s axioms (in particular, from the parallel axiom). 

It is true that Euclid’s axioms prompt us to describe lines by linear equations, but we can 

also take the opposite view: Equations define what lines and curves are, and they provide a 
model of Euclid’s axioms—showing that geometry follows from properties of the real 

numbers. 

 

 In particular, if a line is defined to be the set of points (x, y) in the number plane satisfying 

a linear equation then we can prove the following statements that Euclid took as axioms: 

 there is a unique line through any two distinct points, 

 for any line L and point P outside L, there is a unique line through P not meeting L. 



Distance 

 We introduce the concept of distance or length into the number plane R2 much as we 

introduce lines. First we see what Euclid’s geometry suggests distance should mean; then 

we turn around and take the suggested meaning as a definition. 

 

 Suppose that P1 = (x1, y1) and P2 = (x2, y2) are any two points in R2. Then it follows from 

the meaning of coordinates that there is a right-angled triangle as shown in Figure below, 

and that |P1P2| is the length of its hypotenuse. x 



Distance 

 The vertical side of the triangle has length y2 −y1, and the horizontal side has length 

x2−x1. Then it follows from the Pythagorean theorem that 

 

 

 

 

 

 

 

 

 Thus, it is sensible to define the distance |P1P2| between any two points P1 and P2 by the 
formula . If we do this, the Pythagorean theorem is virtually ―true by definition.‖ It is 

certainly true when the right-angled triangle has a vertical side and a horizontal side. 

And we will see later how to rotate any right-angled triangle to such a position (without 

changing the lengths of its sides). 



Distance 

The equation of a circle 
 

 The distance formula leads immediately to the equation of a circle, as follows. Suppose 

we have a circle with radius r and center at the point P = (a,b). Then any point Q = (x, y) 
on the circle is at distance r from P, and hence formula gives : 

 

 

 

 

 

 

 

 We call this the equation of the circle because it is satisfied by any point (x, y) on the 
circle, and only by such points. 



Distance 

The equidistant line of two points 
 

 A circle is the set of points equidistant from a point—its center. It is also natural to ask: What 

is the set of points equidistant from two points in R2? Answer: The set of points equidistant 
from two points is a line. To see why, let the two points be P1 = (a1,b1) and P2 = (a2,b2). 
Then a point P = (x, y) is equidistant from P1 and P2 if |PP1| = |PP2|, that is, if x and y 
satisfy the equation 

 

(x−a1)2 +(y−b1)2 =(x−a2)2 +(y−b2)2. 
 

 Squaring both sides of this equation, we get 
 

(x−a1)2 +(y−b1)2 = (x−a2)2 +(y−b2)2. 
 

 Expanding the squares gives 
 

x2−2a1x+a21 +y2−2b1y+b21 = x2−2a2x+a22 +y2−2b2y+b22 
 

 The important thing is that the x2 and y2 terms now cancel, which leaves the linear equation 
 

2(a2−a1)x+2(b2−b1)y+(b21 −b22 ) = 0 
 

 Thus, the points P = (x, y) equidistant from P1 and P2 form a line. 



Intersections of lines and circles 

 Now that lines and circles are defined by equations, we can give exact algebraic equivalents of 

straightedge  and compass operations : 

 

 Drawing a line through given points corresponds to finding the equation of the line through given 
points (x1, y1) and (x2, y2). 

 

 Drawing a circle with given center and radius corresponds to finding the equation of the circle with 
given center (a,b) and given radius r. 

 

 Finding new points as intersections of previously drawn lines andcircles corresponds to finding the 

solution points of 

○ – a pair of equations of lines, 

○ – a pair of equations of circles, 

○ – the equation of a line and the equation of a circle. 

 

Solving linear equations requires only the operations +,−,×, and ÷, and the quadratic formula 

shows that √ is the only additional operation needed to solve quadratic equations. Thus, all 

intersection points involved in a straightedge and compass construction can be found with the 

operations +,−,×,÷, and √. 



Intersections of lines and circles 

 The operations +,−,×,÷, and √ can be carried out by straightedge and compass. Hence, we 

get the following result: 

 

 Algebraic criterion for constructibility. A point is constructible (starting from the points 0 
and 1) if and only if its coordinates are obtainable from the number 1 by the operations 
+,−,×,÷, and √. 

 

 The algebraic criterion for constructibility was discovered by Descartes, and its greatest 

virtue is that it enables us to prove that certain figures or points are not constructible. For 
example, one can prove that the number          is not constructible by showing that it cannot 

be expressed by a finite number of square roots, and one can prove that the angle π/3 

cannot be trisected by showing that cos π9 also cannot be expressed by a finite number of 

square roots. These results were not proved until the 19th century, by Pierre Wantzel. Rather 

sophisticated algebra is required, because one has to go beyond Descartes’ concept of 

constructibility to survey the totality of constructible numbers. 



Angle and slope 

 The concept of distance is easy to handle in coordinate geometry because the distance between points 

(x1, y1) and (x2, y2) is an algebraic function of their coordinates. This is not the case for the concept of 
angle. The angle θ between a line y = tx and the x-axis is tan−1 t, and the function tan−1 t is not an 
algebraic function. Nor is its inverse function t = tanθ or the related functions sinθ (sine) and cosθ 

(cosine). 

 

 To stay within the world of algebra, we have to work with the slope t rather than the angle θ . Lines 

make the same angle with the x-axis if they have the same slope, but to test equality of angles in 

general we need the concept of relative slope: If line L1 has slope t1 and line L2 has slope t2, then the 

slope of L1 relative to L2 is defined to be 

 

 

 

 The reason for the ± sign and the absolute value is that the slopes t1, t2 alone do not specify an 
angle—they specify only a pair of lines and hence a pair of angles that add to a straight angle.  

 

 At any rate, with some care it is possible to use the concept of relative slope to test algebraically  

whether angles are equal. The concept also makes it possible to state the SAS and ASA axioms in 

coordinate geometry, and to verify that all of Euclid’s and Hilbert’s axioms hold. We omit the details 

because they are laborious, and because we can approach SAS and ASA differently now that we have 

coordinates. Specifically, it becomes possible to define the concept of ―motion‖ that Euclid appealed to 
in his proof of SAS! This will be done in the next section. 



Isometries 

 A possible weakness of our model of the plane is that it seems to single out a particular point (the 

origin O) and particular lines (the x- and y-axes). In Euclid’s plane, each point is like any other point 

and each line is like any other line. We can overcome the apparent bias of R2 by considering 

transformations that allow any point to become the origin and any line to become the x-axis. As a 
bonus, this idea gives meaning to the idea of ―motion‖ that Euclid tried to use in his attempt to prove 

SAS. 

 

 A transformation of the plane is simply a function f :R2→R2, in other words, a function that sends 

points to points. A transformation f is called an isometry (from the Greek for ―same length‖) if it sends 

any two points, P1 and P2, to points f (P1) and f (P2) the same distance apart. Thus, an isometry is a 

function f with the property   f (P1) f (P2)| = |P1P2| for any two points P1, P2. Intuitively speaking, an 
isometry ―moves the plane rigidly‖ because it preserves the distance between points. There are many 

isometries of the plane, but they can be divided into a few simple and obvious types. We show 

examples of each type below, and, in the next section, we explain why only these types exist. 

 

 You will notice that certain isometries (translations and rotations) make it possible to move the origin 

to any point in the plane and the x-axis to any line. Thus, R2 is really like Euclid’s plane, in the sense 

that each point is like any other point and each line is like any other line. This property entitles us to 

choose axes wherever it is convenient. For example, we are entitled to prove the triangle inequality, as 

suggested in the Exercises to Section 3.3, by choosing one vertex of the triangle at O and another on the 
positive x-axis. 



Isometries 

Translations 
 

 A translation moves each point of the plane the same distance in the same direction. Each 

translation depends on two constants a and b, so we denote it by ta,b. It sends each point 
(x, y) to the point (x+a, y+b). It is obvious that a translation preserves the distance between 

any two points, but it is worth checking this formally—so as to know what to do in less 

obvious cases. 
 

 So let P1 = (x1, y1) and P2 = (x2, y2). It follows that 



Isometries 

Rotations 
 

 We think of a rotation as something involving an angle θ , but, as mentioned in the 

previous section, it is more convenient to work algebraically with cosθ and sinθ . These are 

simply two numbers c and s such that c 2+s 2 =1, so we will denote a rotation of the plane 

about the origin by rc,s.  
 

 The rotation rc,s sends the point (x, y) to the point (cx−sy, sx+cy). It is not obvious why this 

transformation should be called a rotation, but it becomes clearer after we check that rc,s 
preserves lengths. Also, rc,s sends (0,0) to itself, and it moves (1,0) to (c, s) and (0,1) to (−s, 
c), which is exactly what rotation about O through angle θ does. We will see in the next 
section that only one isometry of the plane moves these three points in this manner. 

Movement of points  

by a rotation 



Isometries 

Reflections 
 

 The easiest reflection to describe is reflection in the x-axis, which sends P = (x, y) to P = 
(x,−y). Again it is obvious that this is an isometry, but we can check by calculating the 

distance between reflected points P1 and P2. 
 

 We can reflect the plane in any line, and we can do this by combining reflection in the x-
axis with translations and rotations. For example, reflection in the line y = 1 (which is 
parallel to the x-axis) is the result of the following three isometries: 

 • t0,−1, a translation that moves the line y = 1 to the x-axis, 

 • reflection in the x-axis, 

 • t0,1, which moves the x-axis back to the line y = 1. 
 

 In general, we can do a reflection in any line L by moving L to the x-axis by some 

combination of translation and rotation, reflecting in the x-axis, and then moving the x-axis 
back to L. 
 

 Reflections are the most fundamental isometries, because any isometry is a combination of 

them, as we will see in the next section. In particular, any translation is a combination of 

two reflections, and any rotation is a combination of two reflections. 

 



Isometries 

Glide Reflections 
 

 A glide reflection is the result of a reflection followed by a translation in the direction of the 

line of reflection. For example, if we reflect in the x-axis, sending (x, y) to (x,−y), and follow 
this with the translation t1,0 of length 1 in the x-direction, then (x, y) ends up at (x+1,−y). 

 

 A glide reflection with nonzero translation length is different from the three types of 

isometry previously considered. 

 It is not a translation, because a translation maps any line in the direction of translation 

into itself, whereas a glide reflection maps only one line into itself (namely, the line of 

reflection). 

 It is not a rotation, because a rotation has a fixed point and a glide reflection does not. 

 It is not a reflection, because a reflection also has fixed points (all points on the line of 

reflection). 



The three reflections theorem 

 Three reflections theorem. Any isometry of R2 is a combination of one, two, or 
three reflections. 

 

 One reflection is a reflection, and we found in the previous exercise set that 

combinations of two reflections are translations and rotations, and that 

combinations of three reflections are glide reflections (which include reflections). 

Thus, an isometry of R2 is either a translation, a rotation, or a glide reflection. 



Endnotes  for ―Coordinates‖ 

 The discovery of coordinates is rightly considered a turning point in the development of 

mathematics because it reveals a vast new panorama of geometry, open to exploration in at 

least three different directions. 

 Description of curves by equations, and their analysis by algebra. This direction is called 

algebraic geometry, and the curves described by polynomial equations are called 

algebraic curves. Straight lines, described by the linear equations ax+by+c=0, are 
called curves of degree 1. Circles, described by the equations (x−a)2+(y−b)2 =r2, are 

curves of degree 2, and so on. One can see that there are curves of arbitrarily high 

degree. 

 Algebraic study of objects described by linear equations (such as lines and planes). Even 

this is a big subject, called linear algebra. Although it is technically part of algebraic 

geometry, it has a special flavor, very close to that of Euclidean geometry. The real 

strength of linear algebra is its ability to describe spaces of any number of dimensions 

in geometric language.  

 The study of transformations, which draws on the special branch of algebra known as 

group theory. Because many geometric transformations are described by linear 

equations, this study overlaps with linear algebra. 



 In this chapter, we process coordinates by linear algebra. We view points as 

vectors that can be added and multiplied by numbers, and we introduce the 

inner product of vectors, which gives an efficient algebraic method to deal with 

both lengths and angles. 

 

 We revisit some theorems of Euclid to see where they fit in the world of vector 

geometry, and we become acquainted with some theorems that are particularly 

natural in this environment. 

 

Vector and Euclidean spaces 

Understanding Geometry through Linear Algebra 



Vector 

 Vectors are mathematical objects that can be added, and multiplied by numbers, subject to 

certain rules. The real numbers are the simplest example of vectors, and the rules for sums 

and multiples of any vectors are just the following properties of sums and multiples of 

numbers: 

 

 

 

 

 

 These rules obviously hold when a,b,1,u,v,w,0 are all numbers, and 0 is the ordinary zero. 

 

 They also hold when u,v,w are points in the plane R2, if we interpret 0 as (0,0), + as the 

vector sum defined for u = (u1,u2) and v = (v1, v2) by  
  

 (u1,u2)+(v1+v2) = (u1+v1,u2+v2), 
  

 and au as the scalar multiple defined by 
  

 a(u1,u2) = (au1,au2). 



Vector 

 The vector sum is geometrically interesting, because u+v is the fourth vertex of a 

parallelogram formed by the points 0, u, and v. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In fact, the rule for forming the sum of two vectors is often called the ―parallelogram rule.‖ 

The parallelogram rule for vector sum 



Vector 

 Scalar multiplication by a is also geometrically interesting, because it represents 

magnification by the factor a. It magnifies, or dilates, the whole plane by the factor a, 
transforming each figure into a similar copy of itself.  

Scalar multiplication as a dilation of the plane 



Real vector spaces 

 It seems that the operations of vector addition and scalar multiplication capture some 

geometrically interesting features of a space. With this in mind, we define a real vector 
space to be a set V of objects, called vectors, with operations of vector addition and scalar 

multiplication satisfying the following conditions : 

 

 If u and v are in V, then so are u+v and au for any real number a. 

 There is a zero vector 0 such that u+0 = u for each vector u. Each u in V has a additive 
inverse −u such that u+(−u) = 0. 

 Vector addition and scalar multiplication on V have the eight properties listed at the 

beginning of this section. 

 

 It turns out that real vector spaces are a natural setting for Euclidean geometry. We must 

introduce extra structure, which is called the inner product, before we can talk about 
length and angle. But once the inner product is there, we can prove all theorems of 

Euclidean geometry, often more efficiently than before. Also, we can uniformly extend 

geometry to any number of dimensions by considering the space Rn of ordered n-tuples of 

real numbers (x1, x2, . . . , xn). 



Direction and linear independence 

 Vectors give a concept of direction in R2 by representing lines through 0. If u is a nonzero 

vector, then the real multiples au of u make up the line through 0 and u, so we call them the 

points ―in direction u from 0.‖ (You may prefer to say that −u is in the direction opposite to 
u, but it is simpler to associate direction with a whole line, rather than a half line.) 
 

 Nonzero vectors u and v, therefore, have different directions from 0 if neither is a multiple of 

the other. It follows that such u and v are linearly independent; that is, there are no real 
numbers a and b, not both zero,  
 

with  au+bv = 0. 
 

 Because, if one of a, b is not zero in this equation, we can divide by it and hence express one 

of u, v as a multiple of the other. 
 

 The concept of direction has an obvious generalization: w has direction u from v (or relative 
to v) if w−v is a multiple of u. We also say that ―w−v has direction u,‖ and there is no harm 

in viewing w−v as an abbreviation for the line segment from v to w. As in coordinate 

geometry, we say that line segments from v to w and from s to t are parallel if they have the 
same  direction; that is, if 
 

w−v = a(t−s) for some real number a = 0. 



Direction and linear independence 

 Figure below shows an example of parallel line segments, from v to w and from s to t, both 

of which have direction u. Here we have 

Parallel line segments with direction u 



Direction and linear independence 

The vector concept of parallels on two important theorems. 

 

 Vector Thales theorem.  

  

 If s and v are on one line through 0, t and w are on another, and w−v is 
parallel to t−s, then v = as and w = at for some number a. 

 

 Vector Pappus theorem.  

  

 If r, s, t, u, v, w lie alternately on two lines through 0, with u−v parallel to s−r 
and t−s parallel to v−w, then u−t is parallel to w−r. 



Midpoints and centroids 

 The definition of a real vector space does not include a definition of distance, but we can 

speak of the midpoint of the line segment from u to v and, more generally, of the point that 

divides this segment in a given ratio 

 

 To see why, first observe that v is obtained from u by adding v−u, the vector that represents 

the position of v relative to u. More generally, adding any scalar multiple a(v−u) to u 
produces a point whose direction relative to u is the same as that of v. Thus, the points 

u+a(v−u) are precisely those on the line through u and v. In particular, the midpoint of the 

segment between u and v is obtained by adding 1 2 (v−u) to u, and hence, 

 

 

 

 

 One might describe this result by saying that the midpoint of the line segment between u 

and v is the vector average of u and v. 



Midpoints and centroids 

 This description of the midpoint gives a very short proof of the theorem from that the 

diagonals of a parallelogram bisect each other. 

 

 

 

 

 

 

 

 Then the midpoint of the diagonal from 0 to u+v is ½ (u+v). And, by the result just proved, 

this is also the midpoint of the other diagonal—the line segment between u and v. 
 

 The vector average of two or more points is physically significant because it is the 

barycenter or center of mass of the system obtained by placing equal masses at the given 

points. The geometric name for this vector average point is the centroid. 
 

 In the case of a triangle, the centroid has an alternative geometric description, given by the 

following classical theorem about medians: the lines from the vertices of a triangle to the 

midpoints of the respective opposite sides. 

 

Diagonals of a parallelogram 



Midpoints and centroids 

 Concurrence of medians. The medians of any triangle pass through the same point, the 
centroid of the triangle. 

 

 

 

 

 

 

 

 

 

 Looking at this figure, it seems likely that the medians meet at the point 2/3 of the way 

from u to ½ (v+w), that is, at the point 

 

 This is the centroid, and a similar argument shows that it lies 2/3 of the way between v and 

½ (u+w) and 2/3 of the way between w and ½ (u+v). That is, the centroid is the common 

point of all three medians. 

 

 

The medians of a triangle 



The inner product 

 If u = (u1,u2) and v = (v1, v2) are vectors in R2, we define their inner product u · v to be 
u1v1 + u2v2. Thus, the inner product of two vectors is not another vector, but a real number 

or ―scalar.‖ For this reason, u · v is also called the scalar product of u and v. 

 

 It is easy to check, from the definition, that the inner product has the algebraic properties 

 

 

 

 

 

 which immediately give information about length and angle: 

 The length |u| is the distance of u=(u1,u2) from 0, by the definition of distance in R2 

 Vectors u and v are perpendicular if and only if u · v = 0 



The inner product 

Concurrence of altitudes.  
In any triangle, the perpendiculars from the vertices to opposite sides (the altitudes) have a 
common point. 

 

 To prove this theorem, take 0 at the intersection of two altitudes, say those through the 

vertices u and v. Then it remains to show that the line from 0 to the third vertex w is 

perpendicular to the side v−u. 

Altitudes of a triangle 



The inner product and cosine 

 The inner product of vectors u and v depends not only on their lengths |u| and |v| but also 

on the angle θ between them. The simplest way to express its dependence on angle is with 

the help of the cosine function. We write the cosine as a function of angle θ , cosθ . But, as 

usual, we avoid measuring angles and instead define cosθ as the ratio of sides of a 

rightangled triangle. For simplicity, we assume that the triangle has vertices 0, u, and v as 

shown in the figure below. 

 

 

 

 

 

 

 

 Then the side v is the hypotenuse, θ is the angle between the side u and the hypotenuse, 

and its cosine is defined by 

Cosine as a ratio of lengths 



The inner product and cosine 

 Inner product formula.  If  θ Is the angle between vectors u and v, then  

  u·v = |u||v|cosθ . 

 

 This formula gives a convenient way to calculate the angle (or at least its cosine) between 

any two lines, because we know how to calculate |u| and |v|. It also gives us the ―cosine 

rule‖ of trigonometry directly from the calculation of (u−v) ·(u−v). 

 

 Cosine rule. In any triangle, with sides u, v, and u−v, and angle θ opposite to 

the side u−v, 

 |u−v|2 = |u|2+|v|2−2|u||v|cosθ . 

Quantities mentioned in the cosine rule 



The triangle inequality 

 In vector geometry, the triangle inequality |u+v| ≤ |u|+|v| is usually derived 

from the fact that |u·v| ≤ |u||v|. This result, known as the Cauchy–Schwarz 
inequality.  

 

 The reason for the fuss about the Cauchy–Schwarz inequality is that it holds in 

spaces more complicated than R2, with more complicated inner products. 

Because the triangle inequality follows from Cauchy–Schwarz, it too holds in 

these complicated spaces. We are mainly concerned with the geometry of the 

plane, so we do not need complicated spaces. However, it is worth saying a few 

words about Rn, because linear algebra works just as well there as it does in R2. 

 

 Higher dimensional Euclidean spaces 

 

 



Higher dimensional Euclidean spaces 

 Rn is the set of ordered n-tuples (x1, x2, . . . ,xn) of real numbers x1, x2, . . . ,xn. These 

ordered n-tuples are called n-dimensional vectors. 
 

 It is easy to check that Rn has the properties enumerated previously. Hence, Rn is a real 
vector space under the vector sum and scalar multiplication operations just described.  
 

 Rn becomes a Euclidean space when we give it the extra structure of an inner product with 

the properties enumerated previously. For example, the distance of (u1,u2,u3) from 0 in 
R3 is  

  

Distance in R3 



Higher dimensional Euclidean spaces 

 All theorems proved in this chapter for vectors in the plane R2 hold in Rn. This 
fact is clear if we take the plane in Rn to consist of vectors of the form (x1, x2,0, 
. . . ,0), because such vectors behave exactly the same as vectors (x1, x2) in R2. 
But in fact any given plane in Rn behaves the same as the special plane of 

vectors (x1, x2,0, . . . ,0). We skip the details, but it can be proved by 

constructing an isometry of Rn mapping the given plane onto the special plane. 

As in R2, any isometry is a product of reflections. In Rn, at most n+1 reflections 
are required. 



Rotations, matrices, and complex numbers 

Rotation matrices 
 

 We have defined a rotation of R2 as a function rc,s, where c and s are two real numbers 

such that c2+s2 =1. We described rc,s as the  function that sends (x, y) to (cx−sy, sx+cy), 
but it is also described by the matrix of coefficients of x and y, namely 

 

 

 

 

 Matrix notation allows us to rewrite (x, y) →(cx−sy, sx+cy) as 

 

 

 

 

 Functions are thereby separated from their variables, so they can be composed without 

the variables becoming involved—simply by multiplying matrices. 



Rotations, matrices, and complex numbers 

Rotation matrices 

 

 This idea gives proofs of the formulas for cos(θ1+θ2) and sin(θ1+θ2), but with the 

variables x and y filtered out : 

 

 Rotation through angle θ1 is given by the matrix 

 

 

 Rotation through angle θ2 is given by the matrix 

 

 Rotation through θ1+θ2 is given by the product of these two matrices. That is by 

matrix multiplication 

 

 Finally, equating corresponding entries in the first and last matrices, 



Rotations, matrices, and complex numbers 

Rotation matrices 

 

 This idea gives proofs of the formulas for cos(θ1+θ2) and sin(θ1+θ2), but with the 

variables x and y filtered out : 

 

 Rotation through angle θ1 is given by the matrix 

 

 

 Rotation through angle θ2 is given by the matrix 

 

 Rotation through θ1+θ2 is given by the product of these two matrices. That is by 

matrix multiplication 

 

 Finally, equating corresponding entries in the first and last matrices, 



Rotations, matrices, and complex numbers 

Complex numbers 
 

 One advantage of matrices, which we do not pursue here, is that they can be used to 

generalize the idea of rotation to any number of dimensions. But, for rotations of R2, 

there is a notation even more efficient than the rotation matrix. 

 

 It is the complex number cos θ +  i sin  θ , where i = √−1. 

 

 We represent the point (x, y) ∈ R2 by the complex number z = x+iy, and we rotate it 

through angle θ about O by multiplying it by cos θ +i sin θ . This procedure works 

because i2 = −1, and therefore, ( cos θ +i sin θ )( x+iy ) = x cos θ −ysin θ +I ( x sin θ +y 
cos θ ). 

 

 Thus, multiplication by cos θ +i sin θ sends each point (x, y) to the point  ( x cos θ −y sin 
θ, x sin θ + y cos θ ), which is the result of rotating (x, y) about O through angle θ . 
Multiplying all points at once by cos θ + i  sin θ , therefore, rotates the whole plane about 
O through angle θ . 



Endnotes for ―Vector & Eucledian Spaces‖ 

 Because the geometric content of a vector space with an inner product is much the same 

as Euclidean geometry, it is interesting to see how many axioms it takes to describe a 

vector space. 
 

 To define a vector space, we began with eight axioms for vector addition and scalar 

multiplication: 

 

 

 

 

 

 

 Then, we added three (or four, depending on how you count) axioms for the inner product 

: 

 



Endnotes for ―Vector & Eucledian Spaces‖ 

 We also need relations among inner product, length, and angle—at a minimum the 

cosine formula, 

 
 

 At the very least, one needs axioms saying that the scalars satisfy the ordinary rules of 

calculation, the so-called field axioms (this is usual when defining a vector space) : 

 

 

 

 

 

 

 

 Thus, the usual definition of a vector space, with an inner product suitable for Euclidean 

geometry, takes more than 20 axioms! Admittedly, the field axioms and the vector space 

axioms are useful in many other parts of mathematics, whereas most of the Hilbert axioms 

seem meaningful only in geometry. And, by varying the inner product slightly, one can 

change the geometry of the vector space in interesting ways. 



Endnotes for ―Vector & Eucledian Spaces‖ 

 Still, one can dream of building geometry on a much simpler set of 

axioms.  

 

 In the next section, we will realize this dream with projective 

geometry. 


