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Introduction

Geometry can be developed in iour ilundamentally different ways, and that
all should be used ii the subject Is to be Shown in all its splendor.

Geometry, of all subjects, Should be about /aking different viewpoinis, and
geomelry IS unique among the mathematical disciplines in 1t ability to
look diiierent irom different angles. Some preier to approach it visually,
others algebraically, but the miracle is that they are all looking at the
same thing.



Understanding eometry through Linear Algebra
Coordinates

Around 1630, Pierre de Fermat and Ren e Descartes independently discovered
the advantages oi numbers in geomefxy, as coordinales. Descartes was the first
to publish a detailed account, in his book 0i 1637. For this reason,
he gets most of the credit for the idea and the coordinaie approach (o
geometry became known as (irom the old way oi writing his name:
Des Cartes).

Descartes thought that geometry was as Euclid described it, and that numbers
merely assis/ in Studying geometric figures. But laier mathematicians
discovered objects with “non-Euclidean” properties, such as “lines” having
more than one “parallel” through a given point. To clariiy this Situation, it
became desirable to , and o0 on, and to prove that
they satisty Euclid’s axioms.



Coordinates

This program, carried out with the help oi coordinates, 1S called the

In the iixst three sections oi this chapter, we do the
main steps, using the set R of real numbers to deiine the Zuclidean plane R2
and the points, lines, and circles in ii. We also deiine the concepts oi distance
and (brieily) angle, and show how some crucial axioms and theorems iollow.
However, arithmetization does much more.

It gives an algebraic description oi constructibility by Siraightedge and
compass, which makes It possible to prove that certain figures are #o/
constructible.

It enables us to define what it means (0 “move” a geomeiric figure, which
provides justiiication for Euclid’s proof oi SAS, and raises a new Kind oi
geometric question : What Kinds of “motion” exist?



The mumber line and lhe mimber plane

The set R of real numbers results from filling the gaps in the set Q of rational numbers
with Zrrational numbers, such as v2. This innovation enables us to consider R as a /Jie,
because it has no gaps and the numbers in it are ordered just as we imagine points on a
line to be. We say that R, together with its ordering, 1S a /z7ode/ o the line.

The first step is to build the “plane,” and in this we are guided by the properties oi
parallels in Euclid’s geometry. We imagine a pair of perpendicular lines, called the ¥ axis
and the j~axis, intersecting at a point # called the oz/gin. We interpret the axes as number
lines, with #the number 0 on each, and we assume that the positive direction on the ¥
axis Is to the right and that the positive direction on the y-axis is upward.

Axes and coordinates




The mimber line and the mimber plane

Through any point 2, there Is (by the parallel axiom) a unique line parallel to the y-axis
and a unique line parallel to the faxis. These two lines meet the f-axis and y-axis at
numbers # and /4 called the ¥ and ycoordinales of P, respectively. It is important to
remember which number is on the faxis and which IS on the -axis, because obviously
the point with xcoordinate = 3 and J-coordinaie = 4 i different irom the point with ¥
coordinate =4 and J-coordinate =3.

To Keep the x-coordinate 7and the j-coordinate Zin their places, we use the ordered pair
(@ D). For example, (3,4) is the point with ¥coordinaie =3 and j-coordinaie =4, whereas
(4,3) is the poini with r-coordinate =4 and j-coordinate = 3. The ordered pair (24
specifies 7 uniquely because any other point will have at least one different parallel
passing through it and hence will difier irom 2in either the ¥ or j~coordinate.

Thus, given the existence oi a R whose poinis are real numbers, we also have
d whose points are ordered pairs of real numbers. We oiten write this
number plane as RxR or Rz,



Lines and their equalions

When coordinates are introduced, this allows us to define the property oi straight lines
Known. as You know from high-school mathematics that slope is the quotient “rise
over run” and, more importantly, that the value oi the slope does not depend on which two
points of the line deiine the rise and the run.

Now suppose we are given a line of slope @ Zhal crosses the y-axis al the point @ where y =
¢ If P = (x, y) is any poinl on Hhis line, then the rise from @ /o P is y—¢ and the rimn is X,
Hence

y—c

slope = a =

X

and therefore, multiplying both sides by x, y—¢ = ax, thal Is,
This equation is satisfied by all poinis on the line, and only by them, so we call it the



Lines and their equalions

Almost all lines have equations oi this form; the only exceptions are lines that do not cross

the y-axis. These are the wiich alse do not have a slope as we have defined
It, although we could say they have . Slich a line has an equiation of the form

, for some consiant ¢.
Thus, all lines have equations of the form , for some consianis a, b, and ¢,

called a Zimear equaltion in the variables x and y,

Up fo this point we have been following the steps oi Descartes, who viewed equations of
lines as informaltion dediced from Euclid’s axioms (fn particular, irom the parallel axiom).
It is true that Euclid’s axioms prompt us to describe lines by linear equations, but we can
also take the opposite view: Equations define what lines and curves are, and fhey provide a
mmodel of Euclid’s axioms—showing that geometry follows from properties oi the real
numbers.

In particular, ii a line is defined to be the set of points (X, y) i /¢ number plane satisfying
a linear equation then we can prove the following statements that Euclid took as axioms:



Distance

We iniroduce the concepi of o the number plane F# much as we
introduce lines. First we see what Euclid’s geometry szggesis distance should mean; then
we turn around and take the suggested meaning as a definition.

Suppose that P7 = (x1, y1) and P2 = (X2, y2) are any iwo poinls inn . Then it iollows from
the meaning of coordinates that there is a right-angled triangle as Shown In Figure below,
and that | P1P2/ Is the length of ifs iyporemise. x




Distance

The vertical side of the triangle has length y2 —y1, and fhe horizonfal side has length
X2- 1. Then it follows from the Pythagdoréean theorem thal

i

|P 1P |2 — (-‘lj —X1)”+ (1*: — ] 3-3

and therefore.

PPy = 'V/ (2 =x1)2+ (y2 = 1)

Thus, it is sensible to define fhe disiance [P1P2/ berween any fwo poinls P1 and P2 by the
formiula . If we do this, the Pythagoréan theorem is virtually “true by definition.” It 1S
certainly true when the righi-angled triangle has a vertical side and a horizontal side.
And we will see later how to rotate any right-angled triangle to such a position (without
changing the lengths of its sides).



Distance

The equation of a circle

The distance formula leads immediately to the equation oi a circle, as follows. Suppose
we have a circle with radius 7 and cenier al the point P = (@ b). Then any point 4 = (%, y)
on [he circle is al distance r from P, and hence iormula gives :

r=1PQl=\/(x—ap+(y—h)>

Squaring both sides, we get

-

(x — f..{i}z +(y—>b J: — 2

We call this the egqualion of the circle because it Is salisiied by any poinl (x, y) on the
circle, and only by sitch poinis.



Distance
The equidistant line of two points

A circle Is the set of points equidistant irom a point—its center. It 1S also natural to ask: What
IS the set of poinis equidistant ivom /we poinls in R2? AnSwex: The Sel of poinls equidistant
from two points is a line. To see why, let the two points be P7 = (a1,b1) and P2 = (@2,b2).
Then a point P = (x, y) Is equidisiant from P1 and P2 if [PP1/ = [PP2/, [hal Is, If x and y
sarisfy the equation

U= alf +(7-BIP =(-a2F +(y- DY
Squaring hoth sides of this equation, we get
U-alf +(7-BIE = (- a2 +(-B2Y.
Expanding the squares gives
P21y +a21 + - 2Dy +D21 = Y- 224 +a22 + Y- 202y +D22

The important thing is that the ¥ and 2 lerins now caincel, wiich leavesthe linear equation

Thus, the points P = ¢x, y) equidistant from P1 aird P2 form a lie.



Inierseclions of lines and circles

Now that lines and circles are defined by equations, we can give exact algebraic equivalents oi
straighiedge and compass operations :

Drawing a line through given poinis corresponds fo finding the equation of the line through given
poinis (x1, y1) and (12, y2).

Drawing a circle with given cenler and radius corresponds Io finding the equalion of the circle with
Ziven cenler (@ by and given radius .

Finding new points as intersections of previously drawn lines andcircles corresponds to finding the
solution poinis oi

o =—apair of equations oi lines,
o =—apair of equations oi circles,
o - the equation oi a line and the equation oi a circle.

Solving linear equations requires only the operations +,—,x, and <, and the quadratic formula
shows that + is the only additional operation needed to solve quadratic equations. Thus, all
intersection points involved in a straightedge and compass construction can be found with the
operations +,—,x,~, and .



Inierseclions of lines and circles

The operations +,—,x,+, and ~ can be carried out by straightedge and compass. Hence, we
gel the following resuit:

. 4 poiil Is coinstrictible (siarting from the poinis 0
and 1) if and only If its coordinales are obiainable from fhe number 1 by the operations
+,—,X, +} ﬂ”” \/'

The algebraic criterion ior constructibility was discovered by Descartes, and its Sreatest
virtue is that it enables us to prove that certain figures or poinis are zo/ constrictible. For
example, one can prove thal the miumber g} is not constructible by showing that it cannot
be expressed by a iinite number of square roots, and one can prove that the angle /3
cannot be trisected by showing that cos m9 also cannot be expressed by a iinite number of
square roots. These resulis were not proved until the 19th century, by Pierre Wantzel. Rather
sophisticated algebra is required, because one has to 90 beyond Descartes’ concept of
constructibility to suxvey the /o/alify of consiructible numbers.



Angle and slope

The concept of distance is easy to handle in coordinate seomefry because the distance between points
(X1, yo) and (12, y2) Is an algebraic function of their coordinates. This iS #of the case for the concept of
angle. The angle o between a line y = [x aid the x-axis Is fan-1 1, and the function fan-1 1 is not an
algebraic unction. Nor is its inverse function / = £am or the related functions sim (sine) and cose
(cosine).

To stay within the world of algebra, we have to work with the slope /rather than the angle o . Lines
make the same angle with the x-axis if fhey have the same slope, but to test equality oi angles in
general we need the concept of séfarive slope: If line 11 has slope (1 and line 12 has slope £2, then the
Slope of L1 relative fo 12 Is defined 1o he

The reason ior the * sign and the absolute value is that the slopes 77, L2 alone do nol specily an
algle—rhey specity only a pair of lines and hence a pair of angles that add to a straight angle.

At any rate, with some care it is possible to use the concept oi relative slope to test algebraically
whether angles are equal. The concept also makes it possible to state the SAS and ASA axioms in
coordinate geometry, and to veriiy that all oi Euclid’s and Hilbert’s axioms hold. We omit the details
hecause they are laborious, and because we can approach SAS and ASA difierently now that we have
coordinates. Speciiically, /7 becomes possible lo define the concepl of “mmotion” thal Eiclid appealed lo
In his proof of SAS! This will be done in the next sectioi.



Isomerries

A possible weakness o our model oi the plane is that it seems to single out a particular point (the
origin ) anmd particular lines (the x- and y-axes). In Euclid’s plane, each point is like any other point
and each line is like any other line. We can overcome the apparent bias of R? hy considering
lransformartions that allow any poinl lo become the origin and any line fo become the x-axis. As a
Donus, Hhis idea gives meaning fo the idéea of “motion” that Euclid tried to use in his attempt to prove
SAS.

A transiormation of the plane is simply a function 7 :22— R2, in oflher words, a function that sends
points to points. A transiormation / /s called an isomelry (from fhe Greek for “same length”) 1i it sends
any two points, 27 and P2, lo poinis f (Pr) and 7 (P2) fle same distance apart. Thus, an isometry Is a
junction 7 with the properly for any two poinis 27, P2. Infuifively speaking, an
Isomertry “moves fhe plane rigidly” because it preserves the distance between points. There are many
isometries of the plane, but they can be divided into a iew simple and obvious types. We Show
examples of each type below, and, in the next section, we explain why only these types exist.

You will notice that certain isometries ( ) make it possible to move the origin
to any point in the plane and the x-axis /o anyline. Thus, R? is really like Euclid’s plane, in the sense
that each point is like any other point and each line 1S like any other line. This property entitles us to
choose axes wherever it is convenient. For example, we are entitled to prove the triangle inequality, as
suggesied in the Exercises to Section 3.3, by choosing one vertex oi the triangle at @ and another on the
positive x-axis.



Isomelries
Translations

A translation moves each point of the plane the same distance in the same direction. Each
translation depends on two constants @ and b, so we denofeil by la,b. If sends éach point
(v, y) lo lhe poinl (x+a, y+h). I is obviousthat a translation preserves the distance beiween
any two points, but it is worth checking this iormally—so as t0 know what to do In less
obvious cases.

N0 let P1 = (x1, yi) amd P2 = (X2, y2). I follows thal

tap(P1) = (xi+a,y1 +b), t,5(P2) = (xa+a,y»+b)

and therefore,

s (P tap(P2)| = \/ (x2 +a—x) —a) + (y2+ b —y; —b)?

\ )
F

- 'Vj (x2 —x1)%+ (y2 —y1)

= |PP>|, asrequired.




Isomerries
Rotations

We think of a rotation as something involving an angle o , but, as mentioned in the
previous section, it is more convenient to work algebraically with coso and sino . These are
simply two numbers ¢ and s such thaf ¢ 2+s2 =1, 50 we will denote a rotation of the plane
about the origin by 7¢,s.

The rotation 7¢,s semds fhe poinl (x, y) lo lhe poilil (¢x- 5y, sx+¢y). I(1s not obvious why this
transiormation should be called a rotation, but it becomes clearer aiter we check that 7¢,5
preserves lengis, AIso, 1¢,s sends (0,0) lo ilself, and if moves(1,0) 10 (¢, §) and (0,1) [0 (-,
¢), which is exaclly whal rolalion aboul 0 lhirough angle o does. We will see in the next
Seéction fial only one isometry oi the plane moves these three poinis in this manner.

(c,s) = (cosB,sinB)

Movement of points
by a rotation




Isomelries
Reflections

The easiest reilection to describe IS réflection in the x-axis, wihich sends P = (x, y) lo P =
(). Adain il is obvious that this is an isomelry, buf we can check by calculating the
distance between reilected points 27 and P2.

We can reflect the plane in any line, and we can do this by combining reflection in the x-
axis with franslations and rofations. For example, reflection in the line y = 1 (which is
paiallel lo the x-axis) is the resulf of fhe following three isometries:

- 10— 1, a liansiation thal moves the line y = 1 o lhe x-axis,
- reflection in the x-axis,
- 10,1, which moves the x-axis back fo the line y = 1.

In general, we can do a reflection in any line L by moving L to the x-zxis by some
combination oi translation and rotation, reflecting in the x-zxis, and then moving the x-axis
Dack o L.

Reilections are the most fundamental isomeiries, because any isometry is a combination oi
them, as we will see in the next section. In particular, any translation is a combination oi
two reilections, and any rotation is a combination of two reflections.



Isomelries
Glide Reflections

A glide reflection is the result oi a reilection iollowed by a translation in the direction oi the
line of reflection. For example, if we reflect in the x-axis, sSending (X, y) o (x,—y), aid follow
Lhis with the liansilalion 11,0 of lengfii1 in the x-diréction, then (x, y) ends up ar (x+1,— y).

A glide reflection with nonzero translation length is diiierent irom the three types oi
isometry previously considered.

It IS not a translation, because a translation maps any line in the direction of translation
Into iiseli, whereas a glide reflection maps only one line into iiseli (namely, the line oi
reilection).

It is not a rotation, because a rotation has a iixed point and a glide reilection does not.

It I not a reilection, because a reflection also has fixed points (all poinis on the line of
reilection).



The thiree reflections theoren

Three reilections theoxem. Any isomelry of R2 Is a combinafion of one, we, or
lhree reflections.

One reflection is a reilection, and we iound In the previous exercise set thai
combinations oi two reilections are f(ranslations and rotations, and thal
combinations oi three reilections are glide reilections (which include reflections).
Thus, an isomelry of R2 Is either a lianslation, a rolation, or a glide reflection.



Fidnoles for “Coordinales”

The discovery of coordinates is righily considered a turning point in the development of
mathematics because it reveals a vast new panorama oi geometry, open to exploration in at
least three different directions.

Description oi curves by equations, and their analysis by algebra. This direction is called
algebraic geomelry, and fhe curves described by polynomial equations are called
algebraic curves. Straight lines, described by the linear equations ax+4y+c=0, are
called curves of degree 1. (ircles, described by the equations (x—a)2+@- b2 =12, are
curves oi degree 2, and so on. One can see that there are curves oi arbitrarily high
degree.

Algebraic study oi objects described by linear equations (Such as lines and planes). Even
this 1S a big subject, called Zrear algebra. Although it Is technically part oi algebraic
geomelry, it has a special ilavor, very close to that oi Euclidean geomeiry. The real
sirength of linear algebra is its ability to describe spaces of any number of dimensions
In geometric language.

The study oi transformations, which draws on the special branch of algebra Known as
Zroip [heory, Becaiise many geomelric hansformafions are described Dby linear
equations, this study overlaps with linear algebra.



Undersianding Geometry through Linear Algebia
Vector and Euclidean spaces

In this chapter, we process coordinaties by /Jméar algebra. We view points as
veclors thal can be added and mulliplied by mumbers, and we introduce the
inner product of veclors, wiich gives an efficienf algebraic method to deal with
both lengths and angles.

We revisit some theorems oi Euclid to see where they iit in the world of vector
geomefry, and we become acquainted with some theorems that are particularly
natural In this environment.



vector

Vectors are mathematical objects that can be added, and multiplied by numbers, subject (o
certain rules. The real numbers are the simplest example oi vectors, and the rules for sums

and multiples oi any vectors are just the iollowing properties oi sums and multiples oi
numbers:

u+v=v-+u lu=nu

u+ (V+w) = (u+v)+w a(u+v) =au+av

u+0=u (a+b)u=au-+bu

u-+(—u) =0 a(bu) = (ab)u.

These rules obviously hold when a,5,7,4, v, w,0 are all mumnbers, and 0 isthe ordinary zero.

They also hold when u,v,w are poinls in the plane K, if we inferprel 0 as (0,0), + as the
veclor sum defined for i = (ut,u2) and v = (vi, v2) by
(ULU2)+(V1+V2) = (UT+VLU2+7V2),

and au as the scalar mulfiple defined by
a(lL i2) = @ut,au2).



vector

The vector sum IS geomelrically interesting, hecause u+v is the fourth veriex oi a
parallelogram iormed by the points 0, u, and v.

u-+v-— (:I.-i] + Vi Uy + Vo ]

The parallelogram rule for vector sum

In fact, the rule ior iorming the sum of two vectors is oiten called the “parallelogram rule.”



vector

Scalar multiplication by @ is also gdeomelrically Imieresting, becaise Il represents
magniiication by the factor a X magnifies, or dilales, the wiole plane by the factor 2,
liansforming éach figure info a similar copy of ilsell,

Scalar multiplication as a dilation of the plane



Real veclor spaces

It seems that the operations oi vecior addition and scalar multiplication capture some
geometrically interesting features of a space. With this in mind, we define a séal veclor
space o be a sel v of objects, called veclors, with operations of vector addition and scalar
multiplication satistying the following conditions :

li uand v are in ¥ fhen so are u+v and al for any real mmmber a.

There is @ zéro vecior 0 such thal u+0 = u for éach vector u. Fachu in ¥ has a addifive
inverse — u such that u+¢w = 0.

Vector addition and Scalar multiplication on V khave fhe eight properties listed at the
beginning of this section.

It turns out that real vector spaces are a natural setting ior Euclidean geometry. We must
Introduce exira structure, which is called the Zzwer prodict, before we can lalk aboul
length and angle. But once fhe inner product is there, we can prove all theorems of
Euclidean geomefry, often more efficiently than beiore. Also, we can uniiormly extend
seometry to any mimber of dimensiois by considering the space R of ordered n-ruples oi
real numbers (17, £2, . . ., xi).



Direction and linéear independence

Vectors give a concept oi direction in I by representing lines fhroigh 0. i u is a nonzero
vector, then the real multiples a of u make up the /ine through 0 and u, so we call them the
points “in direction u irom 0.” (You may prefer to say that —u is in the direction opposite o
i, but it is simplerto associate direction with a whole line, rather than a hali line.)

Nonzero vectors u and v, thereiore, have differen directions from 0 ifneither is a multiple oi
the other. Ii iollows that such u and v ave /Jnéarly independent; that is, there are no réal
mimbers a and b, nol both zero,

with au+bv = 0.

Because, 1f one of a, 4 is nol zero in this equalion, we can divide by if andhence express one
oi u, v as a multiple of the other.

The concept oi direction has an obvious generalization: w /Aas direction from v (or relafive
lo ) Iif w—V is a mulliple of 1. We also say thal “w- v has direction u,” and there is no harm
In viewing w-v as an abbreviation for the line segment from v t0 w. As In coordinate
geomelry, we say that line segments irom v to w and irom § to t are parallel if they have the
same direction; that 1s, if

W-V = (- 5) for some réal number a = 0.



Direction and linear independence

Figure below shows an example of parallel line segments, irom v t0 w and from § to t, both
of which have direction u. Here we have

Parallel line segments with direction u



Direction and linéear independence

The vector concept of parallels on two imporiant theorems.

If s and v are on one line Hirough 0, I and w are on another, aid w—v Is
paidllel lo [- s, then v = as and w = al for some mimber a.

IrL s, 1, u, v, wlie alfernalely on two lines tirough 0, with u— v parallel o s-r
aid - s parallel 1o v— w, then i1 is parallel Io w-1.



Midpolnls and centroids

The definition of a real vector space does not include a definition oi distance, but we can
speak of the midpoint of the line segment from u to v and, more generally, oi the point that
divides this segment in a given ratio

To see why, first observe that v is obtained irom u by adding v—u, the vector that represents
the position oi v rélafive o 1. More generally, adding any scalar multiple a@v—uw fo u
prodices a poinl wihose direction relative to u is the same as that of v. Thus, the poinis
u+a¢v- ) areprecisely those on the line through u and v. In particular, the midpoint of the
segment between u and v is obtained by adding 1 2 (v—u) to u, and hence,

|

midpoint of line segment between u and v =u+ s(v—u)=—(u+v).

One might describe this result by saying that the midpoint of the line segment beiween u
and v is the reclor average of i and v.



Midpolnls and centroids

This description oi the midpoint gives a very short prooi of the theorem irom that the
diagonals oi a parallelogram bisect each other.

Diagonals of a parallelogram

Then the midpoint of the diagonal irom 0 to u+v is 2 (u+v). And, by the result just proved,
this is also the midpoint oi the other diagonal—the line segment between u and v.

The vector average of two or more points is physically significant because it is the
Darycenler or cenler of mass of the sysiem obiained by placing equal masses at the given
points. The geometric name for this vector average point is the céntroid.

In the case of a triangle, the centroid has an alternative geometric description, given by the
following classical theorem about /médians: fhe linés irom the vertices of a triangle to the
midpoints of the respective opposite sides.



Midpolnls and centroids

Concurrence of medians. 7he medians of any lriangle pass through the same poini, the
centroid of the triangle.

The medians of a triangle

LooKing at this figure, it seems likely that the medians meet at the point 2/3 of the way
from u to ' (v+w), that is, at the point

This 1s the centroid, and a similar argument shows that it lies 2/3 oi the way between v and
> (u+w) and 2/3 of the way between w and '~ (u+v). That is, the ceniroid is the common
point oi all three medians.



The inner prodirct

Ii u = (ur,u2) and v = (v1, v2) are veclors iin k¢, we define their inner prodict u - v io he
utvl + u2v2, This, the inner prodict of iwo veciors isnot another vector, but a real number
or “scalar.” For this reason, u - v is also called the scalar product of u and v,

It is easy to check, irom the deiinition, that the inner product has the algebraic properties

u.v:‘r.u!

u-(v+w)=u-v+u-w,

(jc.ﬂl':} -V=1u- {r.ﬂ) — (ll V),

which immediately give information about and
The length [u] is the distance of u=(x7,42) from 0, by llle definition of distance in R?
vectors u and v are perpendicular if and only ifu - v=0



The inner prodirct

concurrence of altitudes.

In any triangle, the perpendicilars from the vertices o opposile sides (the allifides) have a
comimmon poinr.

To prove this theorem, take 0 ai the intersection of two aliitudes, say those through the
vertices u and v. Then it remains to show that the line irom 0 to the third vertex w Is
perpendicular to the side v-u.

Altitudes of a triangle




The inner prodirct aid cosine

The inner product of vectors u and v depends not only on their lengths [u| and |v| but also
on the angle 6 beiween them. The simplest way to express its dependence on angle is with
the help of the cosine finclion. We write the cosine as a function oi angle o , coso . But, as
usual, we avoid measuring angles and insiead define coso as the ratio oi sides oi a
rightangled triangle. For simplicity, we assume that the triangle has vertices 0, u, and v as
shown in the figure below.

Cosine as a ratio of lengths

Then the side v is the hypotenuse, o is the angle beiween the side u and the hypotenuse,
and its cosine is defined by




The inner prodirct aid cosine

Inner product iormula. # o Is the angle between vectors u and v, then
u-v=|uj|vjcose .

This formula gives a convenient way to calculate the angle (or at least its cosine) between
any two lines, because we know how to calculate |u| and |v]. It also gives us the “cosine
rule” of trigonomefry directly irom the calculation of (u-v) -(u-v).

Cosine rule. In any triangle, with sides u, v, and v, and angle o opposite o
the side ur-v,

|u-v|2 = [u|2+]|v[2-2|u] [v]cos6 .

Quantities mentioned in the cosine rule




The triangle inequality

In vector geomefry, the triangle inequality |u+v| < |u|+]|v| is usually derived
irom the fact that |u-v] < [uf|v]. This result, known as the lauchy-Schwarz
inequalily.

The reason for the iuss about the Cauchy-Schwarz inequality is that it holds in
spaces more complicated than R2, with more complicated inner products.
Because the triangle inequality follows irom Cauchy-Schwarz, it too holds in
these complicated spaces. We are mainly concerned with the geometry oi the
plane, so we do not need complicated spaces. However, 1t is worth saying a iew
words about Rz, because linéar algebra works just aswell there as 1t does in R2,

Higher dimensional Euclidean spaces



Higher dimensional Euclidean spaces

R7 [s [he sel of ordered n-tuples (x1, x2, . . . ,xn) of real mimbers xi, x2, . . . ,xi. These
ordered z7-/uples are called n-dimensional veclors.

It is easy to check that R” /s lhe properties emimeraled previously. Hence, R” is a real
veclor space under the vector sim aid scalar multiplication operations just described.

R” becomes a Furclidean space when we give i the extia siriicliure of an inner product with
the properties enumerated previously. For example, the distance oi (#7,42,43) from 0 in
)

u= (H 1,U2,U3)

u =\ 4+,

Distance in R3




Higher dimensional Euclidean spaces

All theorems proved in this chapter for vectors in the plane R? hold in R~ 7/kis
facl Is clear if we lake the plane in R fo consist of veclors of the iorm (17, x2,0,
. . . ,0), becalse sich veclors behave exactly the same asveciors (X1, x2) in .
bur in fact any given plane in Rn behaves the same as the special plane oi
vectors (X7, x2,0, . . . ,0). We skip rhe delails, bur if can be proved by
constructing an isometry oi R” mapping the given pilane onto the special plane.

As In R?, any isomefry IS a product of reflections. In R”, af most n+1 reflections
are required.



Rolalions, malrices, aind complex numbers

Rotation matrices

We have defined a rotation of R? as a function 7¢.s, where ¢ aird s are two real numbers
such that ¢2+s2 =1. We described rc,s as the finclion that sends (X, y) 1o (cx- 5y, sx+¢jy),
bt it Is also described by the malrix of coelficients of x and y, namely

Functions are thereby separated irom their variables, so they can be composed without
the variables becoming involved—simply by multiplying matrices.



Rolalions, malrices, aind complex numbers

Rotation matrices

This idea gives proois of the formulas for cos(o1+62) and sin(61+02), but with the
variables x and y filferedout :

" cosB; —sinB;
Sin 6, cosf;

Rotation through angle o1 is given by the matrix (

cos6, —sinb
Rotation through angle 02 is given by the matrix sinf,  cos 6

Rotation through o01+62 is given by the product of these two mairices. That is by
mairix multiplication

Finally, equating corresponding entries in the first and last matrices,

cos( 6 + 6>) = cos By cos B, — sin O sin H,,

sin( @ + 6>) = cos 0 sin 6, + sin B cos 6-.



Rolalions, malrices, aind complex numbers

Rotation matrices

This idea gives proois of the formulas for cos(o1+62) and sin(61+02), but with the
variables x and y filferedout :

" cosB; —sinB;
Sin 6, cosf;

Rotation through angle o1 is given by the matrix (

cos6, —sinb
Rotation through angle 02 is given by the matrix sinf,  cos 6

Rotation through o01+62 is given by the product of these two mairices. That is by
mairix multiplication

Finally, equating corresponding entries in the first and last matrices,

cos( 6 + 6>) = cos By cos B, — sin O sin H,,

sin( @ + 6>) = cos 0 sin 6, + sin B cos 6-.



Rolalions, malrices, aind complex numbers

Complex numbers

One advaniage oi mairices, which we do not pursue here, is that they can bhe used to
generalize the idea of rotation to any number of dimensions. But, ior rotations of R?,
there is a notation even more efficient than the rotation matrix.

" cos® —sinb
sin @ cos @ |

We represent the point (x, y) & by the complex mumber 7 = x+iy, and we rotate it
through angle o about @ by multiplying it by cos © +i sin o . This procedure works
because 2 = — 1, aid therefore, (¢0S © +7 50 )( X+iy) =X €056 —ysin 6 +1 (X Sin6 +y
€056).

Thus, multiplication by cos 0 +7 st 0 sends éach poiiil (x, y) o the poilll ( X cos 6 —y sin
0, X Sl 0 + y cos 0 ), which Is the resull of rofating (x, y) aboul 0 tirough angle o .
Mitltiplying all poinis af once by cos o + I sin o , therefore, votaies the whole plane abour
0 lhrough angle o .



Fidnoies for “Vector & Fiicledian Spaces”

Because the geometric content of a vector space with an inner product i much the same
as Euclidean geomeiry, it is interesting to see how many axioms ii takes to describe a
vector space.

To define a vector space, we began with eight axioms for vecior addition and scalar
multiplication:

ut+v=v-+tu lu=u

U+ (Vv+w)=(u+v)+w a(u+v) = au+av

u+0=u (a+Db)u=au+bu

u+(—u)=0 a(bu) = (ab)u.

Then, we added three (or iour, depending on how you count) axioms ior the inner product

]_]I‘-“,T:‘T.-l_l3

u-(v+w)=u-v+u-w,

(au)-v=u-(av) =a(u-v),




Fidnoies for “Vector & Fiicledian Spaces”

We also need relations among inner product, length, and angle—ai a minimum the
cosine iormula,

u-v=|ul|vjcoso,

At the very least, one needs axioms saying that the scalars satisiy the ordinary rules of
calculation, the so-called /7e/d axioms ((his is usital when defining a veclor space) :

a+b=b+a, ab = ba (commutative laws)
a+(b+c)=(a+b)+ec. a(bc) = (ab)e  (associative laws)

a+0=a, al =a (identity laws)

a+(—a) =0, aa ' =1 (inverse laws)

a(b+c)=ab+ac (distributive law)

Thus, the usual deiinition oi a vector space, with an inner product suitable ior Euclidean
geomelry, fakes more than 20 axioms! Admiitedly, the field axioms and the vector space
axioms are useiul in many other parts oi mathematics, whereas most of the Hilbert axioms
seem meaningiul only in geometry. And, by varying the inner product slightly, one can
change the geometry oi the vector space In interesting ways.



Fidnoies for “Vector & Fiicledian Spaces”

Mill, one can dream oi building geomeiry on a much simpler set oi
axioms.

In the next section, we will realize this dream with



