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INTRODUCTION 

 

 Geometry can be developed in four fundamentally different ways, and that 

all  should be used if the subject is to be shown in all its splendor. 

 Euclid-style construction and axiomatics  

 linear algebra  

 projective geometry 

 transformation groups  

 

 Geometry, of all subjects, should be about taking different viewpoints, and 

geometry is unique among the mathematical disciplines in its ability to 

look different from different angles. Some prefer to approach it visually, 

others algebraically, but the miracle is that they are all looking at the same 

thing.  

 



EUCLID-STYLE CONSTRUCTION AND AXIOMATICS 

 

 For over 2000 years, mathematics was almost synonymous with the geometry of 

Euclid’s Elements, a book written around 300 BCE and used in school 

mathematics instruction until the 20th century. Euclidean geometry, as it is now 

called, was thought to be the foundation of all exact science 

 

 A naive way to describe Euclidean geometry is to say it concerns the geometric 

figures that can be drawn (or constructed as we say) by straightedge and 

compass. Euclid assumes that it is possible to draw a straight line between any 

two given points, and to draw a circle with given center and radius. All of the 

propositions he proves are about figures built from straight lines and circles. 

Thus, to understand Euclidean geometry, one needs some idea of the scope of 

straightedge and compass constructions.  

Straightedge and compass 



 Euclid assumes that certain constructions can be done 
and he states these assumptions in a list called his 
axioms (traditionally called postulates). He assumes 
that it is possible to: 

1. Draw a straight line segment between any two 
points. 

2. Extend a straight line segment indefinitely. 

3. Draw a circle with given center and radius. 

 

 Axioms 1 and 2 say we have a straightedge, an 
instrument for drawing arbitrarily long line segments. 
Today we replace Axioms 1 and 2 by the single axiom 
that a line can be drawn through any two points. The 
straightedge (unlike a ruler) has no scale marked on it 
and hence can be used only for drawing lines—not for 
measurement. Euclid separates the function of 
measurement from the function of drawing straight 
lines by giving measurement functionality only to the 
compass—the instrument assumed in Axiom 3. The 
compass is used to draw the circle through a given 
point B, with a given point A as center (Figure 1.1). 

The Compass 

Blake’s painting of Newton the measurer 

Euclid’s construction axioms 



 The compass also enables us to add and subtract the length |AB| of AB from the length |CD| 

of another line segment CD by picking up the compass with radius set to |AB| and 

describing a circle with center D. By adding a fixed length repeatedly, one can construct a 

―scale‖ on a given line, effectively creating a ruler. This process illustrates how the power 

of measuring lengths resides in the compass. Exactly which lengths can be measured in this 

way is a deep question, which belongs to algebra and analysis. 

   

 Separating the concepts of ―straightness‖ and ―length,‖ as the straightedge and the 

compass do, turns out to be important for understanding the foundations of geometry. 

 

Euclid’s construction axioms 

Adding and subtracting lengths 



 Constructing an equilateral triangle on a given side AB is the first proposition of 

the Elements, and it takes three steps: 

1. Draw the circle with center A and radius AB. 

2. Draw the circle with center B and radius AB. 

3. Draw the line segments from A and B to the intersection C of the two circles just constructed. 

 The result is the triangle ABC with sides AB, BC, and CA in Figure 1.4. Sides AB and 

CA have equal length because they are both radii of the first circle. Sides AB and 

BC have equal length because they are both radii of the second circle. Hence, all 

three sides of triangle ABC are equal. 

 

Euclid’s construction of the equilateral triangle 

Constructing an equilateral triangle 



 The equilateral triangle construction comes first in the Elements because several other 

constructions follow from it. Among them are constructions for bisecting a line segment 

and bisecting an angle. (―Bisect‖ is from the Latin for ―cut in two.‖) 

 

Some basic constructions 

Bisecting a line segment AB Bisecting an angle POQ 

Dividing a line segment into equal parts 



EUCLID’S ―ELEMENTS‖ 

 Euclid’s Elements is the most influential book in the history of mathematics. The climax of 

the Elements is the theory of regular polyhedra. Only five regular polyhedra exist. Three of 

them are built from equilateral triangles, one from squares, and one from regular 

pentagons. This remarkable phenomenon underlines the importance of equilateral 

triangles and squares, and draws attention to the regular pentagon. Some geometers 

believe that the material in the Elements was chosen very much with the theory of regular 

polyhedra in mind. For example, Euclid wants to construct the equilateral triangle, square, 

and pentagon in order to construct the regular polyhedra. 

 

 

The regular polyhedra 



EUCLID’S APPROACH TO GEOMETRY 

 Length is the fundamental concept of Euclid’s geometry, but several important theorems seem to be 

―really‖ about angle or area—for example, the theorem on the sum of angles in a triangle and the 

Pythagorean theorem on the sum of squares. Also, Euclid often uses area to prove theorems about 

length, such as the Thales theorem. 

 In this chapter, we retrace some of Euclid’s steps in the theory of angle and area to show how they 

lead to the Pythagorean theorem and the Thales theorem. We begin with his theory of angle, which 

shows most clearly the influence of his parallel axiom, the defining axiom of what is now called 

Euclidean geometry. 

 Angle is linked with length from the beginning by the so-called SAS (―side angle side‖) criterion for 

equal triangles (or ―congruent triangles,‖ as we now call them). We observe the implications of SAS for 

isosceles triangles and the properties of angles in a circle, and we note the related criterion, ASA 

(―angle side angle‖). 

 The theory of area depends on ASA, and it leads directly to a proof of the Pythagorean theorem. It 

leads more subtly to the Thales theorem and its consequences that we saw in Chapter 1. The theory of 

angle then combines nicely with the Thales theorem to give a second proof of the Pythagorean 

theorem. 

 In following these deductive threads, we learn more about the scope of straightedge and compass 

constructions, partly in the exercises. Interesting spinoffs from these investigations include a process 

for cutting any polygon into pieces that form a square, a construction for the square root of any 

length, and a construction of the regular pentagon. 

 



 Euclid’s parallel axiom.  

 If a straight line crossing two straight lines makes the interior angles on one 
side together less than two right angles, then the two straight lines will meet 
on that side. 

 

 

 

 

 

 

 

 Modern parallel axiom.  

 For any line L and point P outside L, there is exactly one line through P that 
does not meet L. 

When lines are parallel When lines are not parallel 

The parallel axiom 



 Angles in a triangle 

 The existence of parallels and the equality of alternate interior angles 
imply a beautiful property of triangles. 

   

 Angle sum of a triangle 

 If  α,  β , and  γ are the angles of any triangle, then        α +β +γ =π. 

 

The angle sum of a triangle 



 Euclid says that two geometric figures coincide when one of them can be moved to fit 

exactly on the other. He uses the idea of moving one figure to coincide with another in the 

proof of Proposition 4 of Book I: If two triangles have two corresponding sides equal, and 
the angles between these sides equal, then their third sides and the corresponding two 
angles are also equal. 

   

 His proof consists of moving one triangle so that the equal angles of the two triangles 

coincide, and the equal sides as well. But then the third sides necessarily coincide, because 

their endpoints do, and hence, so do the other two angles.  

   

 Today we say that two triangles are congruent when their corresponding angles and side 

lengths are equal, and we no longer attempt to prove the proposition above. Instead, we 

take it as an axiom (that is, an unproved assumption), because it seems simpler to assume 

it than to introduce the concept of motion into geometry. The axiom is often called SAS (for 

―side angle side‖). 

 

Congruence axioms 



 SAS  (side angle side) axiom 

 For brevity, one often expresses SAS by saying that two triangles are congruent if two 

sides and the included angle are equal.  

 

 Isosceles triangle theorem 

 If a triangle has two equal sides, then the angles opposite to these sides are also equal.

  

 

 

 

 

 Parallelogram side theorem 

 Opposite sides of a parallelogram are equal. 

Two views of an isosceles triangle 

Dividing a parallelogram into triangles 



 The principle of logic that ―things equal to the same thing are equal to each 

other‖ is one of five principles that Euclid calls common notions. The common 

notions he states are particularly important for his theory of area, and they are as 

follows: 

 1. Things equal to the same thing are also equal to one another. 

 2. If equals are added to equals, the wholes are equal. 

 3. If equals are subtracted from equals, the remainders are equal. 

 4. Things that coincide with one another are equal to one another. 

 5. The whole is greater than the part. 

   

 The word ―equal‖ here means ―equal in some specific respect.‖ In most cases, it 

means ―equal in length‖ or ―equal in area‖. Likewise, ―addition‖ can mean 

addition of lengths or addition of areas, but Euclid never adds a length to an area 

because this has no meaning in his system. 

Area and equality 



 The square of a sum 

   

 Proposition 4 of Book II is another interesting example. It states a property of squares and rectangles 

that we express by the algebraic formula 

   

   

 

 Euclid does not have algebraic notation, so he has to state this equation in words: If a line is cut at 
random, the square on the whole is equal to the squares on the segments and twice the rectangle 
contained by the segments. Whichever way you say it, Figure 2.8 explains why it is true. 

 
The square of a sum of line segments 

• The square on the line is what we write as (a+b)2. 

• The squares on the two segments a and b are a2 and b2, 

respectively. 

• The rectangle “contained” by the segments a and b is ab. 

• The square (a+b)2 equals (in area) the sum of a2, b2, and 

two copies of ab.  



 The first nonrectangular region that can be shown ―equal‖ to a rectangle in Euclid’s sense is a 

parallelogram. 

Area of parallelograms and triangles 

Assembling parallelogram and 

rectangle from the same pieces 

A case in which more cuts are 

required 

A triangle as half a parallelogram 

This formula is important in two ways: 

 

As a statement about area. From a modern 

viewpoint, the formula gives the area of the 

triangle as a product of numbers. From the ancient 

viewpoint, it gives a rectangle “equal” to the 

triangle, namely, the rectangle with the same base 

and half the height of the triangle. 

 

As a statement about proportionality. For triangles 

with the same height, the formula shows that their 

areas are proportional to their bases. This 

statement turns out to be crucial for the proof of 

the Thales theorem (Section 2.6). 



 By developeing the theory of area for parallelograms and triangles in Book I of 

the Elements, Euclid could explain the proof of the Pythagorean Theorem &Thales 
Theorem 

 

 

 Pythagorean Theorem. For any right-angled triangle, the sum of the 

squares on the two shorter sides equals the square on the hypotenuse. 

 

 

 Thales Theorem. A line drawn parallel to one side of a triangle cuts 

the other two sides proportionally. 

Proof of The Pythagorean Theorem &Thales Theorem 



 Invariance of angles in a circle.  
 

 If A and B are two points on a circle, then, for 
all points C on one of the arcs connecting them, 
the angle ACB is constant. 

 

 

 

 Angle in a semicircle theorem.  
 

 If A and B are the ends of a diameter of a circle, 
and C is any other point on the circle, then 
angle ACB is a right angle.  

 

Angles in a circle 

Angle α +β in a circle 

Constructing a right-angled triangle  

with given hypotenuse 



 Euclid found the most important axiom of geometry—the parallel axiom—and he 

also identified the basic theorems and traced the logical connections between them. 

However, his approach misses certain fine points and is not logically complete. There 

are many situations, in which Euclid assumes something is true because it looks true 

in the diagram. 

 

 These gaps in Euclid’s approach to geometry were first noticed in the 19th century, 

and the task of filling them was completed by David Hilbert in his ―Foundations of 

Geometry‖ (1899). The downside of Hilbert’s completion of Euclid is that it is lengthy 

and difficult. Nearly 20 axioms are required, and some key theorems are hard to 

prove. To some extent, this hardship occurs because Hilbert insists on geometric 

definitions of + and ×. He wants numbers to come from ―inside‖ geometry rather 

than from ―outside‖.  

 

 Later, we will take the real numbers as the starting point of geometry, and see what 

advantages this may have over the Euclid–Hilbert approach. One clear advantage is 

access to algebra, which reduces many geometric problems to simple calculations. 

Algebra also offers some conceptual advantages, as we will see. 

 

Conclusion 


